ﻻ يوجد ملخص باللغة العربية
Recent 3D organ reconstitution studies show that a group of stem cells can establish a body axis and acquire different fates in a spatially organized manner. How such symmetry breaking happens in the absence of external spatial cues, and how developmental circuits are built to permit this is largely unknown. Here, we review spontaneous symmetry breaking phenomena in organoids, and hypothesize underlying patterning mechanisms that involve interacting diffusible species. Recent theoretical advances offer new directions beyond the prototypical Turing model. Experiments guided by theory will allow us to predict and control organoid self-organization.
The concept of internal anatomical asymmetry is familiar; usually in humans the heart is on the left and the liver is on the right, however how does the developing embryo know to produce this consistent laterality? Symmetry breaking initiates with le
We show how translational invariance can be broken by the vacuum that drives the spontaneous symmetry breaking of extra-dimensional extensions of the Standard Model, when delta-like interactions between brane and bulk scalar fields are present. We ex
Thromboembolic complications remain a central issue in management of patients on mechanical circulatory support. Despite the best practices employed in design and manufacturing of modern ventricular assist devices, complexity and modular nature of th
We show that the metastable, symmetry-breaking ground states of quantum many-body Hamiltonians have vanishing quantum mutual information between macroscopically separated regions, and are thus the most classical ones among all possible quantum ground
We discuss the recent scenario of tachyonic preheating at the end of inflation as a consequence of a tachyonic mass term in the scalar field responsible for spontaneous symmetry breaking. We use 3D lattice simulations to expore this very non-perturba