ترغب بنشر مسار تعليمي؟ اضغط هنا

Tachyonic Preheating and Spontaneous Symmetry Breaking

86   0   0.0 ( 0 )
 نشر من قبل Juan Garcia-Bellido
 تاريخ النشر 2001
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the recent scenario of tachyonic preheating at the end of inflation as a consequence of a tachyonic mass term in the scalar field responsible for spontaneous symmetry breaking. We use 3D lattice simulations to expore this very non-perturbative and non-linear phenomenon, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential.

قيم البحث

اقرأ أيضاً

We investigate the effects of bosonic trilinear interactions in preheating after chaotic inflation. A trilinear interaction term allows for the complete decay of the massive inflaton particles, which is necessary for the transition to radiation domin ation. We found that typically the trilinear term is subdominant during early stages of preheating, but it actually amplifies parametric resonance driven by the four-legs interaction. In cases where the trilinear term does dominate during preheating, the process occurs through periodic tachyonic amplifications with resonance effects, which is so effective that preheating completes within a few inflaton oscillations. We develop an analytic theory of this process, which we call tachyonic resonance. We also study numerically the influence of trilinear interactions on the dynamics after preheating. The trilinear term eventually comes to dominate after preheating, leading to faster rescattering and thermalization than could occur without it. Finally, we investigate the role of non-renormalizable interaction terms during preheating. We find that if they are present they generally dominate (while still in a controllable regime) in chaotic inflation models. Preheating due to these terms proceeds through a modified form of tachyonic resonance.
70 - Huaiyu Duan 2015
Neutrino oscillations in a hot and dense astrophysical environment such as a core-collapse supernova pose a challenging, seven-dimensional flavor transport problem. To make the problem even more difficult (and interesting), neutrinos can experience c ollective oscillations through nonlinear refraction in the dense neutrino medium in this environment. Significant progress has been made in the last decade towards the understanding of collective neutrino oscillations in various simplified neutrino gas models with imposed symmetries and reduced dimensions. However, a series of recent studies seem to have reset this progress by showing that these models may not be compatible with collective neutrino oscillations because the latter can break the symmetries spontaneously if they are not imposed. We review some of the key concepts of collective neutrino oscillations by using a few simple toy models. We also elucidate the breaking of spatial and directional symmetries in these models because of collective oscillations.
We study baryogenesis in effective field theories where a $mathrm{U}(1)_{ B-L}$-charged scalar couples to gravity via curvature invariants. We analyze the general possibilities in such models, noting the relationships between some of them and existin g models, such as Affleck-Dine baryogenesis. We then identify a novel mechanism in which $mathrm{U}(1)_{ B-L}$ can be broken by couplings to the Gauss-Bonnet invariant during inflation and reheating. Using analytic methods, we demonstrate that this mechanism provides a new way to dynamically generate the net matter-anti-matter asymmetry observed today, and verify this numerically.
Plateau inflation is an experimentally consistent framework in which the scale of inflation can be kept relatively low. Close to the edge of the plateau, scalar perturbations are subject to a strong tachyonic instability. Tachyonic preheating is real ized when, after inflation, the oscillating inflaton repeatedly re-enters the plateau. We develop the analytic theory of this process and expand the linear approach by including backreaction between the coherent background and growing perturbations. For a family of plateau models, the analytic predictions are confronted with numerical estimates. Our analysis shows that the inflaton fragments in a fraction of an $e$-fold in all examples supporting tachyonic preheating, generalizing the results of previous similar studies. In these scenarios, the scalar-to-tensor ratio is tiny, $r<10^{-7}$.
84 - Shoji Hashimoto 2009
Using lattice QCD we study the spectrum of low-lying fermion eigenmodes. According to the Banks-Casher relation, accumulation of the low-mode is responsible for the spontaneous breaking of chiral symmetry in the QCD vacuum. On the lattice we use the overlap fermion formulation that preserves exact chiral symmetry. This is essential for the study of low-lying eigenmode distributions. Through a detailed comparison with the expectations from chiral perturbation theory beyond the leading order, we confirm the senario of the spontaneous symmetry breaking and determine some of the low energy constants. We also discuss on other related physical quantities, which can be studied on the lattice with exact chiral symmetry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا