ترغب بنشر مسار تعليمي؟ اضغط هنا

Renormalization of quantum dot $g$-factor in superconducting Rashba nanowires

203   0   0.0 ( 0 )
 نشر من قبل Jelena Klinovaja
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study analytically and numerically the renormalization of the $g$-factor in semiconducting Rashba nanowires (NWs), consisting of a normal and superconducting section. If the potential barrier between the sections is high, a quantum dot (QD) is formed in the normal section. For harmonic (hard-wall) confinement, the effective $g$-factor of all QD levels is suppressed exponentially (power-law) in the product of the spin-orbit interaction (SOI) wavevector and the QD length. If the barrier between the two sections is removed, the $g$-factor of the emerging Andreev bound states is suppressed less strongly. In the strong SOI regime and if the chemical potential is tuned to the SOI energy in both sections, the $g$-factor saturates to a universal constant. Remarkably, the effective $g$-factor shows a pronounced peak at the SOI energy as function of the chemical potentials. In addition, if the SOI is uniform, the $g$-factor renormalization as a function of the chemical potential is given by a universal dependence which is independent of the QD size. This prediction provides a powerful tool to determine experimentally whether the SOI in the whole NW is uniform and, moreover, gives direct access to the SOI strengths of the NW via $g$-factor measurements. In addition, it allows one to find the optimum position of the chemical potential for bringing the NW into the topological phase at large magnetic fields.

قيم البحث

اقرأ أيضاً

We study theoretically the detection of the topological phase transition occurring in Rashba nanowires with proximity-induced superconductivity using a quantum dot. The bulk states lowest in energy of such a nanowire have a spin polarization parallel or antiparallel to the applied magnetic field in the topological or trivial phase, respectively. We show that this property can be probed by the quantum dot created at the end of the nanowire by external gates. By tuning one of the two spin-split levels of the quantum dot to be in resonance with nanowire bulk states, one can detect the spin polarization of the lowest band via transport measurement. This allows one to determine the topological phase of the Rashba nanowire independently of the presence of Majorana bound states.
Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much relevance for several applications. Here, we report on the anisotropy of the g-factor tensor and diamagnetic coefficient in wurtzite/zincblende (WZ/ZB) crystal-phase quantum dots (QDs) realized in single InP nanowires. The WZ and ZB alternating axial sections in the NWs are identified by high-angle annular dark-field scanning transmission electron microscopy. The electron (hole) g-factor tensor and the exciton diamagnetic coefficients in WZ/ZB crystal-phase QDs are determined through micro-photoluminescence measurements at low temperature (4.2 K) with different magnetic field configurations, and rationalized by invoking the spin-correlated orbital current model. Our work provides key parameters for band gap engineering and spin states control in crystal-phase low-dimensional structures in nanowires.
92 - Ting Zhang , He Liu , Fei Gao 2021
Holes in nanowires have drawn significant attention in recent years because of the strong spin-orbit interaction, which plays an important role in constructing Majorana zero modes and manipulating spin-orbit qubits. Here, from the strongly anisotropi c leakage current in the spin blockade regime for a double dot, we extract the full g-tensor and find that the spin-orbit field is in plane with an azimuthal angle of 59{deg} to the axis of the nanowire. The direction of the spin-orbit field indicates a strong spin-orbit interaction along the nanowire, which may have originated from the interface inversion asymmetry in Ge hut wires. We also demonstrate two different spin relaxation mechanisms for the holes in the Ge hut wire double dot: spin-flip cotunneling to the leads, and spin-orbit interaction within the double dot. These results help establish feasibility of a Ge-based quantum processor.
We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the grow th direction z and is changed over a large range, 100 kV/cm. Both electron and hole g-factors are determined by high resolution laser spectroscopy with resonance fluorescence detection. This, along with the low electrical-noise environment, gives very high quality experimental results. The hole g-factor g_xh depends linearly on the electric field Fz, dg_xh/dFz = (8.3 +/- 1.2)* 10^-4 cm/kV, whereas the electron g-factor g_xe is independent of electric field, dg_xe/dFz = (0.1 +/- 0.3)* 10^-4 cm/kV (results averaged over a number of quantum dots). The dependence of g_xh on Fz is well reproduced by a 4x4 k.p model demonstrating that the electric field sensitivity arises from a combination of soft hole confining potential, an In concentration gradient and a strong dependence of material parameters on In concentration. The electric field sensitivity of the hole spin can be exploited for electrically-driven hole spin rotations via the g-tensor modulation technique and based on these results, a hole spin coupling as large as ~ 1 GHz is expected to be envisaged.
We study theoretically transport through a semiconducting nanowire (NW) in the presence of Rashba spin orbit interaction, uniform magnetic field, and spatially modulated magnetic field. The system is fully gapped, and the interplay between the spin o rbit interaction and the magnetic fields leads to fractionally charged fermion (FF) bound states of Jackiw-Rebbi type at each end of the nanowire. We investigate the transport and noise behavior of a N/NW/N system, where the wire is contacted by two normal leads (N), and we look for possible signatures that could help in the experimental detection of such states. We find that the differential conductance and the shot noise exhibit a sub-gap structure which fully reveals the presence of the FF state. Our predictions can be tested in standard two-terminal measurements through InSb/InAs nanowires.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا