ﻻ يوجد ملخص باللغة العربية
We study analytically and numerically the renormalization of the $g$-factor in semiconducting Rashba nanowires (NWs), consisting of a normal and superconducting section. If the potential barrier between the sections is high, a quantum dot (QD) is formed in the normal section. For harmonic (hard-wall) confinement, the effective $g$-factor of all QD levels is suppressed exponentially (power-law) in the product of the spin-orbit interaction (SOI) wavevector and the QD length. If the barrier between the two sections is removed, the $g$-factor of the emerging Andreev bound states is suppressed less strongly. In the strong SOI regime and if the chemical potential is tuned to the SOI energy in both sections, the $g$-factor saturates to a universal constant. Remarkably, the effective $g$-factor shows a pronounced peak at the SOI energy as function of the chemical potentials. In addition, if the SOI is uniform, the $g$-factor renormalization as a function of the chemical potential is given by a universal dependence which is independent of the QD size. This prediction provides a powerful tool to determine experimentally whether the SOI in the whole NW is uniform and, moreover, gives direct access to the SOI strengths of the NW via $g$-factor measurements. In addition, it allows one to find the optimum position of the chemical potential for bringing the NW into the topological phase at large magnetic fields.
We study theoretically the detection of the topological phase transition occurring in Rashba nanowires with proximity-induced superconductivity using a quantum dot. The bulk states lowest in energy of such a nanowire have a spin polarization parallel
Crystal-phase low-dimensional structures offer great potential for the implementation of photonic devices of interest for quantum information processing. In this context, unveiling the fundamental parameters of the crystal phase structure is of much
Holes in nanowires have drawn significant attention in recent years because of the strong spin-orbit interaction, which plays an important role in constructing Majorana zero modes and manipulating spin-orbit qubits. Here, from the strongly anisotropi
We report a large g-factor tunability of a single hole spin in an InGaAs quantum dot via an electric field. The magnetic field lies in the in-plane direction x, the direction required for a coherent hole spin. The electrical field lies along the grow
We study theoretically transport through a semiconducting nanowire (NW) in the presence of Rashba spin orbit interaction, uniform magnetic field, and spatially modulated magnetic field. The system is fully gapped, and the interplay between the spin o