ترغب بنشر مسار تعليمي؟ اضغط هنا

On detecting repetition from fast radio bursts

124   0   0.0 ( 0 )
 نشر من قبل Liam Connor
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast radio bursts (FRBs) are bright, millisecond-duration radio pulses whose origins are unknown. To date, only one (FRB 121102) out of several dozen has been seen to repeat, though the extent to which it is exceptional remains unclear. We discuss detecting repetition from FRBs, which will be very important for understanding their physical origin, and which also allows for host galaxy localisation. We show how the combination of instrument sensitivity, beamshapes, and individual FRB luminosity functions affect the detection of sources whose repetition is not necessarily described by a homogeneous Poisson process. We demonstrate that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) could detect many new repeating FRBs for which host galaxies could be subsequently localised using other interferometers, but it will not be an ideal instrument for monitoring FRB 121102. If the luminosity distributions of repeating FRBs are given by power-laws with significantly more dim than bright bursts, CHIMEs repetition discoveries could preferentially come not from its own discoveries, but from sources first detected with lower-sensitivity instruments like the Australian Square Kilometer Array Pathfinder (ASKAP) in flys eye mode. We then discuss observing strategies for upcoming surveys, and advocate following up sources at approximately regular intervalsand with telescopes of higher sensitivity, when possible. Finally, we discuss doing pulsar-like periodicity searching on FRB follow-up data, based on the idea that while most pulses are undetectable, folding on an underlying rotation period could reveal the hidden signal.



قيم البحث

اقرأ أيضاً

The fast radio burst (FRB) population is observationally divided into sources that have been observed to repeat and those that have not. There is tentative evidence that the bursts from repeating sources have different properties than the non-repeati ng ones. In order to determine the occurrence rate of repeating sources and characterize the nature of repeat emission, we have been conducting sensitive searches for repetitions from bursts detected with the Australian Square Kilometre Array Pathfinder (ASKAP) with the 64-m Parkes radio telescope, using the recently commissioned Ultra-wideband Low (UWL) receiver system, over a band spanning 0.7$-$4.0 GHz. We report the detection of a repeat burst from the source of FRB 20190711A. The detected burst is 1 ms wide and has a bandwidth of just 65 MHz. We find no evidence of any emission in the remaining part of the 3.3 GHz UWL band. While the emission bandwidths of the ASKAP and UWL bursts show $ u^{-4}$ scaling consistent with a propagation effect, the spectral occupancy is inconsistent with diffractive scintillation. This detection rules out models predicting broad-band emission from the FRB 20190711A source and puts stringent constraints on the emission mechanism. The low spectral occupancy highlights the importance of sub-banded search methods in detecting FRBs.
89 - Istomin Ya.N 2017
Scenario of formation of fast radio bursts (FRBs) is proposed. Just like radio pulsars, sources of FRBs are magnetized neutron stars. Appearance of strong electric field in a magnetosphere of a neutron star is associated with close passage of a dense body near hot neutron star. For the repeating source FRB 121102, which has been observed in four series of bursts, the period of orbiting of the body is about 200 days. Thermal radiation from the surface of the star (temperature is of the order of $ 10^8 , K $) causes evaporation and ionization of the matter of the dense body. Ionized gas (plasma) flows around the magnetosphere of the neutron star with the velocity $ u simeq 10^7 , cm / s $, and creates electric potential $ psi_0 simeq 10^{11} , V $ in the polar region of the magnetosphere. Electrons from the plasma flow are accelerated toward the star, and gain Lorentz factor of $ simeq 10 ^ 5 $. Thermal photons moving toward precipitating electrons are scattered by them, and produce gamma photons with energies of $ simeq 10^5 , m_e c^2 $. These gamma quanta produce electron-positron pairs in collisions with thermal photons. The multiplicity, the number of born pairs per one primary electron, is about $ 10^5 $. The electron-positron plasma, produced in the polar region of magnetosphere, accumulates in a narrow layer at a bottom of a potential well formed on one side by a blocking potential $ psi_0 $, and on the other side by pressure of thermal radiation. The density of electron-positron plasma in the layer increases with time, and after short time the layer becomes a mirror for thermal radiation of the star. The thermal radiation in the polar region under the layer is accumulated during time $ simeq 500 , s $, then the plasma layer is ejected outside. The ejection is observed as burst of radio emission formed by the flow of relativistic electron-positron plasma.
Fast Radio Bursts (FRBs) are bright, extragalactic radio pulses whose origins are still unknown. Until recently, most FRBs have been detected at frequencies greater than 1 GHz with a few exceptions at 800 MHz. The recent discoveries of FRBs at 400 MH z from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope has opened up possibilities for new insights about the progenitors while many other low frequency surveys in the past have failed to find any FRBs. Here, we present results from a FRB survey recently conducted at the Jodrell Bank Observatory at 332 MHz with the 76-m Lovell telescope for a total of 58 days. We did not detect any FRBs in the survey and report a 90$%$ upper limit of 5500 FRBs per day per sky for a Euclidean Universe above a fluence threshold of 46 Jy ms. We discuss the possibility of absorption as the main cause of non-detections in low frequency (< 800 MHz) searches and invoke different absorption models to explain the same. We find that Induced Compton Scattering alone cannot account for absorption of radio emission and that our simulations favour a combination of Induced Compton Scattering and Free-Free Absorption to explain the non-detections. For a free-free absorption scenario, our constraints on the electron density are consistent with those expected in the post-shock region of the ionized ejecta in Super-Luminous SuperNovae (SLSNe).
221 - Tomonori Totani 2013
Fast radio bursts (FRBs) at cosmological distances have recently been discovered, whose duration is about milliseconds. We argue that the observed short duration is difficult to explain by giant flares of soft gamma-ray repeaters, though their event rate and energetics are consistent with FRBs. Here we discuss binary neutron star (NS-NS) mergers as a possible origin of FRBs. The FRB rate is within the plausible range of NS-NS merger rate and its cosmological evolution, while a large fraction of NS-NS mergers must produce observable FRBs. A likely radiation mechanism is coherent radio emission like radio pulsars, by magnetic braking when magnetic fields of neutron stars are synchronized to binary rotation at the time of coalescence. Magnetic fields of the standard strength (~ 10^{12-13} G) can explain the observed FRB fluxes, if the conversion efficiency from magnetic braking energy loss to radio emission is similar to that of isolated radio pulsars. Corresponding gamma-ray emission is difficult to detect by current or past gamma-ray burst satellites. Since FRBs tell us the exact time of mergers, a correlated search would significantly improve the effective sensitivity of gravitational wave detectors.
Recently, Thornton et al. reported the detection of four fast radio bursts (FRBs). The dispersion measures indicate that the sources of these FRBs are at cosmological distance. Given the large full sky event rate ~ 10^4 sky^-1 day^-1, the FRBs are a promising target for multi-messenger astronomy. Here we propose double degenerate, binary white-dwarf (WD) mergers as the source of FRBs, which are produced by coherent emission from the polar region of a rapidly rotating, magnetized massive WD formed after the merger. The basic characteristics of the FRBs, such as the energetics, emission duration and event rate, can be consistently explained in this scenario. As a result, we predict that some FRBs can accompany type Ia supernovae (SNe Ia) or X-ray debris disks. Simultaneous detection could test our scenario and probe the progenitors of SNe Ia, and moreover would provide a novel constraint on the cosmological parameters. We strongly encourage future SN and X-ray surveys that follow up FRBs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا