ترغب بنشر مسار تعليمي؟ اضغط هنا

Limits on Absorption from a 332-MHz survey for Fast Radio Bursts

72   0   0.0 ( 0 )
 نشر من قبل Kaustubh Rajwade
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Fast Radio Bursts (FRBs) are bright, extragalactic radio pulses whose origins are still unknown. Until recently, most FRBs have been detected at frequencies greater than 1 GHz with a few exceptions at 800 MHz. The recent discoveries of FRBs at 400 MHz from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope has opened up possibilities for new insights about the progenitors while many other low frequency surveys in the past have failed to find any FRBs. Here, we present results from a FRB survey recently conducted at the Jodrell Bank Observatory at 332 MHz with the 76-m Lovell telescope for a total of 58 days. We did not detect any FRBs in the survey and report a 90$%$ upper limit of 5500 FRBs per day per sky for a Euclidean Universe above a fluence threshold of 46 Jy ms. We discuss the possibility of absorption as the main cause of non-detections in low frequency (< 800 MHz) searches and invoke different absorption models to explain the same. We find that Induced Compton Scattering alone cannot account for absorption of radio emission and that our simulations favour a combination of Induced Compton Scattering and Free-Free Absorption to explain the non-detections. For a free-free absorption scenario, our constraints on the electron density are consistent with those expected in the post-shock region of the ionized ejecta in Super-Luminous SuperNovae (SLSNe).



قيم البحث

اقرأ أيضاً

123 - Liam Connor , Emily Petroff 2018
Fast radio bursts (FRBs) are bright, millisecond-duration radio pulses whose origins are unknown. To date, only one (FRB 121102) out of several dozen has been seen to repeat, though the extent to which it is exceptional remains unclear. We discuss de tecting repetition from FRBs, which will be very important for understanding their physical origin, and which also allows for host galaxy localisation. We show how the combination of instrument sensitivity, beamshapes, and individual FRB luminosity functions affect the detection of sources whose repetition is not necessarily described by a homogeneous Poisson process. We demonstrate that the Canadian Hydrogen Intensity Mapping Experiment (CHIME) could detect many new repeating FRBs for which host galaxies could be subsequently localised using other interferometers, but it will not be an ideal instrument for monitoring FRB 121102. If the luminosity distributions of repeating FRBs are given by power-laws with significantly more dim than bright bursts, CHIMEs repetition discoveries could preferentially come not from its own discoveries, but from sources first detected with lower-sensitivity instruments like the Australian Square Kilometer Array Pathfinder (ASKAP) in flys eye mode. We then discuss observing strategies for upcoming surveys, and advocate following up sources at approximately regular intervalsand with telescopes of higher sensitivity, when possible. Finally, we discuss doing pulsar-like periodicity searching on FRB follow-up data, based on the idea that while most pulses are undetectable, folding on an underlying rotation period could reveal the hidden signal.
Fast Radio Bursts (FRBs) are short lived ($sim$ msec), energetic transients (having a peak flux density of $sim$ Jy) with no known prompt emission in other energy bands. We present results of a search for prompt X-ray emissions from 41 FRBs using the Cadmium Zinc Telluride Imager (CZTI) on AstroSat which continuously monitors $sim70%$ of the sky. Our searches on various timescales in the 20-200 keV range, did not yield any counterparts in this hard X-ray band. We calculate upper limits on hard X-ray flux, in the same energy range and convert them to upper bounds for $eta$: the ratio X-ray to radio fluence of FRBs. We find $eta leq 10^{8-10}$ for hard X-ray emission. Our results will help constrain the theoretical models of FRBs as the models become more quantitative and nearer, brighter FRBs are discovered.
We report on a search for Fast Radio Bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a DM of 3000 pc cm$^{-3}$ while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm$^{-3}$. No FRBs were detected in the pointings observed through May 2016. We estimate a 95% confidence upper limit on the FRB rate of $3.6times 10^3$ FRBs sky$^{-1}$ day$^{-1}$ above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index $alpha$ by running simulations for different astrophysical scenarios and cumulative flux density distributions. The non-detection with GBNCC is consistent with the 1.4-GHz rate reported for the Parkes surveys for $alpha > +0.35 $ in the absence of scattering and free-free absorption and $alpha > -0.3$ in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to $sim$50 FRBs a day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log $N$-log $S$ slope and pulse profile evolution across its bandwidth (400-800 MHz).
We present a search for transient radio sources on timescales of 2-9 years at 150 MHz. This search is conducted by comparing the first Alternative Data Release of the TIFR GMRT Sky Survey (TGSS ADR1) and the second data release of the LOFAR Two-metre Sky Survey (LoTSS DR2). The overlapping survey area covers 5570 $rm{deg}^2$ on the sky, or 14% of the entire hemisphere. We introduce a method to compare the source catalogues that involves a pair match of sources, a flux density cutoff to meet the survey completeness limit and a newly developed compactness criterion. This method is used to identify both transient candidates in the TGSS source catalogue that have no counterpart in the LoTSS catalogue and transient candidates in LoTSS without a counterpart in TGSS. We find that imaging artefacts and uncertainties and variations in the flux density scales complicate the transient search. Our method to search for transients by comparing two different surveys, while taking into account imaging artefacts around bright sources and misaligned flux scales between surveys, is universally applicable to future radio transient searches. No transient sources were identified, but we are able to place an upper limit on the transient surface density of $<5.4 cdot 10^{-4} text{deg}^{-2}$ at 150 MHz for compact sources with an integrated flux density over 100 mJy. Here we define a transient as a compact source with flux greater than 100 mJy that appears in the catalogue of one survey without a counterpart in the other survey.
160 - Ali Kheirandish , Alex Pizzuto , 2019
Although IceCube has discovered a diffuse astrophysical neutrino flux, the underlying sources of these neutrinos remain unknown. Transient astrophysical objects, such as fast radio bursts (FRBs), could explain a large percentage of the measured flux. We present the analysis techniques of IceCube searches for MeV to TeV neutrinos from FRBs. As no significant correlation between IceCube neutrinos and FRBs has been found, we present the first limit on MeV neutrino emission from FRBs and the most constraining limits for neutrinos with GeV to TeV energies. We also describe the prospects for future IceCube neutrino searches coinciding with FRB detections from next generation radio interferometers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا