ﻻ يوجد ملخص باللغة العربية
Recently, a simple prescription to embed the global Peccei-Quinn (PQ) symmetry into a gauged $U(1)$ symmetry has been proposed. There, explicit breaking of the global PQ symmetry expected in quantum gravity are highly suppressed due to the gauged PQ symmetry. In this paper, we apply the gauged PQ mechanism to models where the global PQ symmetry and supersymmetry (SUSY) are simultaneously broken at around $mathcal{O}(10^{11-12})$,GeV. Such scenario is motivated by an intriguing coincidence between the supersymmetry breaking scale which explains the observed Higgs boson mass by the gravity mediated sfermion masses, and the PQ breaking scale which evades all the astrophysical and the cosmological constraints. As a concrete example, we construct a model which consists of a simultaneous supersymmetry/PQ symmetry breaking sector based on $SU(2)$ dynamics and an additional PQ symmetry breaking sector based on $SU(N)$ dynamics. We also show that new vector-like particles are predicted in the TeV range in the minimum model, which can be tested by the LHC experiments.
We propose a model where Dirac neutrino mass is obtained from small vacuum expectation value (VEV) of neutrino-specific Higgs doublet without fine-tuning problem. The small VEV results from a seesaw-like formula with the high energy scale identified
We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambi
We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact $Z_N$ symmetry. For $N = 9$ or $10$, this symmetry can protect the accion - the Nambu-G
We aim to explain the nature of neutrinos using Peccei-Quinn symmetry. We discuss two simple scenarios, one based on a type-II Dirac seesaw and the other in a one-loop neutrino mass generation, which solve the strong CP problem and naturally lead to
We propose a model of Dirac neutrino masses generated at one-loop level. The origin of this mass is induced from Peccei-Quinn symmetry breaking which was proposed to solve the so-called strong CP problem in QCD, therefore, the neutrino mass is connec