ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac neutrino from the breaking of Peccei-Quinn symmetry

75   0   0.0 ( 0 )
 نشر من قبل Seungwon Baek
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English
 تأليف Seungwon Baek




اسأل ChatGPT حول البحث

We propose a model where Dirac neutrino mass is obtained from small vacuum expectation value (VEV) of neutrino-specific Higgs doublet without fine-tuning problem. The small VEV results from a seesaw-like formula with the high energy scale identified as the Peccei-Quinn (PQ) symmetry breaking scale. Axion can be introduced {it `a la} KSVZ or DFSZ. The model suggests neutrino mass, solution to the strong CP problem, and dark matter may be mutually interconnected.



قيم البحث

اقرأ أيضاً

We propose a model of Dirac neutrino masses generated at one-loop level. The origin of this mass is induced from Peccei-Quinn symmetry breaking which was proposed to solve the so-called strong CP problem in QCD, therefore, the neutrino mass is connec ted with the QCD scale, $Lambda_{rm QCD}$. We also study the parameter space of this model confronting with neutrino oscillation data and leptonic rare decays. The phenomenological implications to leptonic flavor physics such as the electromagnetic moment of charged leptons and neutrinos are studied. Axion as the dark matter candidate is one of the byproduct in our scenario. Di-photon and Z-photon decay channels in the LHC Higgs search are investigated, we show that the effects of singly charged singlet scalar can be distinguished from the general two Higgs doublet model.
We aim to explain the nature of neutrinos using Peccei-Quinn symmetry. We discuss two simple scenarios, one based on a type-II Dirac seesaw and the other in a one-loop neutrino mass generation, which solve the strong CP problem and naturally lead to Dirac neutrinos. In the first setup latest neutrino mass limit gives rise to axion which is in the reach of conventional searches. Moreover, we have both axion as well as WIMP dark mater for our second set up.
We show that, for values of the axion decay constant parametrically close to the GUT scale, the Peccei-Quinn phase transition may naturally occur during warm inflation. This results from interactions between the Peccei-Quinn scalar field and the ambi ent thermal bath, which is sustained by the inflaton field through dissipative effects. It is therefore possible for the axion field to appear as a dynamical degree of freedom only after observable CMB scales have become super-horizon, thus avoiding the large-scale axion isocurvature perturbations that typically plague such models. This nevertheless yields a nearly scale-invariant spectrum of axion isocurvature perturbations on small scales, with a density contrast of up to a few percent, which may have a significant impact on the formation of gravitationally-bound axion structures such as mini-clusters.
We consider extensions of the Standard Model in which a spontaneously broken global chiral Peccei-Quinn (PQ) symmetry arises as an accidental symmetry of an exact $Z_N$ symmetry. For $N = 9$ or $10$, this symmetry can protect the accion - the Nambu-G oldstone boson arising from the spontaneous breaking of the accidental PQ symmetry - against semi-classical gravity effects, thus suppressing gravitational corrections to the effective potential, while it can at the same time provide for the small explicit symmetry breaking term needed to make models with domain wall number $N_{rm DW}>1$, such as the popular Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) model ($N_{rm DW}=6$), cosmologically viable even in the case where spontaneous PQ symmetry breaking occurred after inflation. We find that $N=10$ DFSZ accions with mass $m_A approx 3.5$-$4.2,mathrm{meV}$ can account for cold dark matter and simultaneously explain the hints for anomalous cooling of white dwarfs. The proposed helioscope International Axion Observatory - being sensitive to solar DFSZ accions with mass above a few meV - will decisively test this scenario.
Recently, a simple prescription to embed the global Peccei-Quinn (PQ) symmetry into a gauged $U(1)$ symmetry has been proposed. There, explicit breaking of the global PQ symmetry expected in quantum gravity are highly suppressed due to the gauged PQ symmetry. In this paper, we apply the gauged PQ mechanism to models where the global PQ symmetry and supersymmetry (SUSY) are simultaneously broken at around $mathcal{O}(10^{11-12})$,GeV. Such scenario is motivated by an intriguing coincidence between the supersymmetry breaking scale which explains the observed Higgs boson mass by the gravity mediated sfermion masses, and the PQ breaking scale which evades all the astrophysical and the cosmological constraints. As a concrete example, we construct a model which consists of a simultaneous supersymmetry/PQ symmetry breaking sector based on $SU(2)$ dynamics and an additional PQ symmetry breaking sector based on $SU(N)$ dynamics. We also show that new vector-like particles are predicted in the TeV range in the minimum model, which can be tested by the LHC experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا