ترغب بنشر مسار تعليمي؟ اضغط هنا

Hire the Experts: Combinatorial Auction Based Scheme for Experts Selection in E-Healthcare

67   0   0.0 ( 0 )
 نشر من قبل Vikash Singh
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

During the last decade, scheduling the healthcare services (such as staffs and OTs) inside the hospitals have assumed a central role in healthcare. Recently, some works are addressed in the direction of hiring the expert consultants (mainly doctors) for the critical healthcare scenarios from outside of the medical unit, in both strategic and non-strategic settings under monetary and non-monetary perspectives. In this paper, we have tried to investigate the experts hiring problem with multiple patients and multiple experts; where each patient reports a preferred set of experts which is private information alongwith their private cost for consultancy. To the best of our knowledge, this is the first step in the direction of modeling the experts hiring problem in the combinatorial domain. In this paper, the combinatorial auction based scheme is proposed for hiring experts from outside of the hospitals to have expertise by the preferred doctors set to the patients.

قيم البحث

اقرأ أيضاً

Testing the validity of claims made by self-proclaimed experts can be impossible when testing them in isolation, even with infinite observations at the disposal of the tester. However, in a multiple expert setting it is possible to design a contract that only informed experts accept and uninformed experts reject. The tester can pit competing forecasts of future events against each other and take advantage of the uncertainty experts have about the other experts knowledge. This contract will work even when there is only a single data point to evaluate.
We aim to design strategies for sequential decision making that adjust to the difficulty of the learning problem. We study this question both in the setting of prediction with expert advice, and for more general combinatorial decision tasks. We are n ot satisfied with just guaranteeing minimax regret rates, but we want our algorithms to perform significantly better on easy data. Two popular ways to formalize such adaptivity are second-order regret bounds and quantile bounds. The underlying notions of easy data, which may be paraphrased as the learning problem has small variance and multiple decisions are useful, are synergetic. But even though there are sophisticated algorithms that exploit one of the two, no existing algorithm is able to adapt to both. In this paper we outline a new method for obtaining such adaptive algorithms, based on a potential function that aggregates a range of learning rates (which are essential tuning parameters). By choosing the right prior we construct efficient algorithms and show that they reap both benefits by proving the first bounds that are both second-order and incorporate quantiles.
In e-commerce advertising, it is crucial to jointly consider various performance metrics, e.g., user experience, advertiser utility, and platform revenue. Traditional auction mechanisms, such as GSP and VCG auctions, can be suboptimal due to their fi xed allocation rules to optimize a single performance metric (e.g., revenue or social welfare). Recently, data-driven auctions, learned directly from auction outcomes to optimize multiple performance metrics, have attracted increasing research interests. However, the procedure of auction mechanisms involves various discrete calculation operations, making it challenging to be compatible with continuous optimization pipelines in machine learning. In this paper, we design underline{D}eep underline{N}eural underline{A}uctions (DNAs) to enable end-to-end auction learning by proposing a differentiable model to relax the discrete sorting operation, a key component in auctions. We optimize the performance metrics by developing deep models to efficiently extract contexts from auctions, providing rich features for auction design. We further integrate the game theoretical conditions within the model design, to guarantee the stability of the auctions. DNAs have been successfully deployed in the e-commerce advertising system at Taobao. Experimental evaluation results on both large-scale data set as well as online A/B test demonstrated that DNAs significantly outperformed other mechanisms widely adopted in industry.
Throughout the past decade, there has been an extensive research on scheduling the hospital resources such as the operation theatre(s) (OTs) and the experts (such as nurses, doctors etc.) inside the hospitals. With the technological growth, mainly ad vancement in communication media (such as smart phones, video conferencing, smart watches etc.) one may think of taking the expertise by the doctors (distributed around the globe) from outside the in-house hospitals. Earlier this interesting situation of hiring doctors from outside the hospitals has been studied from monetary (with patient having infinite budget) and non-monetary perspectives in strategic setting. In this paper, the more realistic situation is studied in terms of hiring the doctors from outside the hospital when a patient is constrained by budget. Our proposed mechanisms follow the two pass mechanism design framework each consisting of allocation rule and payment rule. Through simulations, we evaluate the performance and validate our proposed mechanisms.
The doctors (or expert consultants) are the critical resources on which the success of critical medical cases are heavily dependent. With the emerging technologies (such as video conferencing, smartphone, etc.) this is no longer a dream but a fact, t hat for critical medical cases in a hospital, expert consultants from around the world could be hired, who may be present physically or virtually. Earlier, this interesting situation by taking the expert consultancies from outside the hospital had been studied, but under monetary perspective. In this paper, for the first time, to the best of our knowledge, we investigate the situation, where the below income group (BIG) people of the society may be served efficiently through the expert consultancy by the renowned doctors from outside of the hospital under zero budget. This will help us saving many lives which will fulfil the present day need of biomedical research. We propose three mechanisms: Random pick-assign mechanism (RanPAM), Truthful optimal allocation mechanism (TOAM), and Truthful optimal allocation mechanism for incomplete preferences (TOAM-IComP) to allocate the doctor to the patient. With theoretical analysis, we demonstrate that the TOAM is strategy-proof, and exhibits a unique core property. The mechanisms are also validated with exhaustive experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا