ﻻ يوجد ملخص باللغة العربية
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.
We introduce OmniSource, a novel framework for leveraging web data to train video recognition models. OmniSource overcomes the barriers between data formats, such as images, short videos, and long untrimmed videos for webly-supervised learning. First
Traditional computer vision models are trained to predict a fixed set of predefined categories. Recently, natural language has been shown to be a broader and richer source of supervision that provides finer descriptions to visual concepts than superv
Knowledge Distillation (KD) has been used in image classification for model compression. However, rare studies apply this technology on single-stage object detectors. Focal loss shows that the accumulated errors of easily-classified samples dominate
Recently, contrastive learning has achieved great results in self-supervised learning, where the main idea is to push two augmentations of an image (positive pairs) closer compared to other random images (negative pairs). We argue that not all random
In this paper, we target on advancing the performance in facial expression recognition (FER) by exploiting omni-supervised learning. The current state of the art FER approaches usually aim to recognize facial expressions in a controlled environment b