ترغب بنشر مسار تعليمي؟ اضغط هنا

Data-Efficient Language-Supervised Zero-Shot Learning with Self-Distillation

87   0   0.0 ( 0 )
 نشر من قبل Ruizhe Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Traditional computer vision models are trained to predict a fixed set of predefined categories. Recently, natural language has been shown to be a broader and richer source of supervision that provides finer descriptions to visual concepts than supervised gold labels. Previous works, such as CLIP, use a simple pretraining task of predicting the pairings between images and text captions. CLIP, however, is data hungry and requires more than 400M image text pairs for training. We propose a data-efficient contrastive distillation method that uses soft labels to learn from noisy image-text pairs. Our model transfers knowledge from pretrained image and sentence encoders and achieves strong performance with only 3M image text pairs, 133x smaller than CLIP. Our method exceeds the previous SoTA of general zero-shot learning on ImageNet 21k+1k by 73% relatively with a ResNet50 image encoder and DeCLUTR text encoder. We also beat CLIP by 10.5% relatively on zero-shot evaluation on Google Open Images (19,958 classes).

قيم البحث

اقرأ أيضاً

Visual cognition of primates is superior to that of artificial neural networks in its ability to envision a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to e nvision objects with different attributes, we propose a family of objective functions, expressed on groups of examples, as a novel learning framework that we term Group-Supervised Learning (GSL). GSL allows us to decompose inputs into a disentangled representation with swappable components, that can be recombined to synthesize new samples. For instance, images of red boats & blue cars can be decomposed and recombined to synthesize novel images of red cars. We propose an implementation based on auto-encoder, termed group-supervised zero-shot synthesis network (GZS-Net) trained with our learning framework, that can produce a high-quality red car even if no such example is witnessed during training. We test our model and learning framework on existing benchmarks, in addition to anew dataset that we open-source. We qualitatively and quantitatively demonstrate that GZS-Net trained with GSL outperforms state-of-the-art methods.
Zero-shot image classification has made promising progress by training the aligned image and text encoders. The goal of this work is to advance zero-shot object detection, which aims to detect novel objects without bounding box nor mask annotations. We propose ViLD, a training method via Vision and Language knowledge Distillation. We distill the knowledge from a pre-trained zero-shot image classification model (e.g., CLIP) into a two-stage detector (e.g., Mask R-CNN). Our method aligns the region embeddings in the detector to the text and image embeddings inferred by the pre-trained model. We use the text embeddings as the detection classifier, obtained by feeding category names into the pre-trained text encoder. We then minimize the distance between the region embeddings and image embeddings, obtained by feeding region proposals into the pre-trained image encoder. During inference, we include text embeddings of novel categories into the detection classifier for zero-shot detection. We benchmark the performance on LVIS dataset by holding out all rare categories as novel categories. ViLD obtains 16.1 mask AP$_r$ with a Mask R-CNN (ResNet-50 FPN) for zero-shot detection, outperforming the supervised counterpart by 3.8. The model can directly transfer to other datasets, achieving 72.2 AP$_{50}$, 36.6 AP and 11.8 AP on PASCAL VOC, COCO and Objects365, respectively.
Knowledge Distillation (KD) has been used in image classification for model compression. However, rare studies apply this technology on single-stage object detectors. Focal loss shows that the accumulated errors of easily-classified samples dominate the overall loss in the training process. This problem is also encountered when applying KD in the detection task. For KD, the teacher-defined hard samples are far more important than any others. We propose ADL to address this issue by adaptively mimicking the teachers logits, with more attention paid on two types of hard samples: hard-to-learn samples predicted by teacher with low certainty and hard-to-mimic samples with a large gap between the teachers and the students prediction. ADL enlarges the distillation loss for hard-to-learn and hard-to-mimic samples and reduces distillation loss for the dominant easy samples, enabling distillation to work on the single-stage detector first time, even if the student and the teacher are identical. Besides, ADL is effective in both the supervised setting and the semi-supervised setting, even when the labeled data and unlabeled data are from different distributions. For distillation on unlabeled data, ADL achieves better performance than existing data distillation which simply utilizes hard targets, making the student detector surpass its teacher. On the COCO database, semi-supervised adaptive distillation (SAD) makes a student detector with a backbone of ResNet-50 surpasses its teacher with a backbone of ResNet-101, while the student has half of the teachers computation complexity. The code is avaiable at https://github.com/Tangshitao/Semi-supervised-Adaptive-Distillation
Deep learning (DL) has emerged as a powerful tool for accelerated MRI reconstruction, but these methods often necessitate a database of fully-sampled measurements for training. Recent self-supervised and unsupervised learning approaches enable traini ng without fully-sampled data. However, a database of undersampled measurements may not be available in many scenarios, especially for scans involving contrast or recently developed translational acquisitions. Moreover, database-trained models may not generalize well when the unseen measurements differ in terms of sampling pattern, acceleration rate, SNR, image contrast, and anatomy. Such challenges necessitate a new methodology that can enable scan-specific DL MRI reconstruction without any external training datasets. In this work, we propose a zero-shot self-supervised learning approach to perform scan-specific accelerated MRI reconstruction to tackle these issues. The proposed approach splits available measurements for each scan into three disjoint sets. Two of these sets are used to enforce data consistency and define loss during training, while the last set is used to establish an early stopping criterion. In the presence of models pre-trained on a database with different image characteristics, we show that the proposed approach can be combined with transfer learning to further improve reconstruction quality.
We investigate omni-supervised learning, a special regime of semi-supervised learning in which the learner exploits all available labeled data plus internet-scale sources of unlabeled data. Omni-supervised learning is lower-bounded by performance on existing labeled datasets, offering the potential to surpass state-of-the-art fully supervised methods. To exploit the omni-supervised setting, we propose data distillation, a method that ensembles predictions from multiple transformations of unlabeled data, using a single model, to automatically generate new training annotations. We argue that visual recognition models have recently become accurate enough that it is now possible to apply classic ideas about self-training to challenging real-world data. Our experimental results show that in the cases of human keypoint detection and general object detection, state-of-the-art models trained with data distillation surpass the performance of using labeled data from the COCO dataset alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا