ترغب بنشر مسار تعليمي؟ اضغط هنا

The origin of the first neutron star -- neutron star merger

369   0   0.0 ( 0 )
 نشر من قبل Krzysztof Belczynski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The first neutron star-neutron star (NS-NS) merger was discovered on August 17, 2017 through gravitational waves (GW170817) and followed with electromagnetic observations. This merger was detected in an old elliptical galaxy with no recent star formation. We perform a suite of numerical calculations to understand the formation mechanism of this merger. We probe three leading formation mechanisms of double compact objects: classical isolated binary star evolution, dynamical evolution in globular clusters and nuclear cluster formation to test whether they are likely to produce NS-NS mergers in old host galaxies. Our simulations with optimistic assumptions show current NS-NS merger rates at the level of 10^-2 yr^-1 from binary stars, 5 x 10^-5 yr^-1 from globular clusters and 10^-5 yr^-1 from nuclear clusters for all local elliptical galaxies (within 100 Mpc^3). These models are thus in tension with the detection of GW170817 with an observed rate 1.5 yr^-1 (per 100 Mpc^3; LIGO/Virgo estimate). Our results imply that either (i) the detection of GW170817 by LIGO/Virgo at their current sensitivity in an elliptical galaxy is a statistical coincidence; or that (ii) physics in at least one of our three models is incomplete in the context of the evolution of stars that can form NS-NS mergers; or that (iii) another very efficient (unknown) formation channel with a long delay time between star formation and merger is at play.

قيم البحث

اقرأ أيضاً

We describe the first observations of the same celestial object with gravitational waves and light. * GW170817 was the first detection of a neutron star merger with gravitational waves. * The detection of a spatially coincident weak burst of $gamma $-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. * A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of $sim$0.05 M$_{odot}$ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. * Radio and X-ray observations revealed a long-rising source that peaked $sim$160 d after the merger. Combined with the apparent superluminal motion of the associated VLBI source, these observations show that the merger produced a relativistic structured jet whose core was oriented $approx$ 20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from the jet interaction with the merger ejecta. * The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis for future work.
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and textit{Fermi}/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard textit{Insight}-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ($sim$1000 cm$^2$) and microsecond time resolution in 0.2-5 MeV. In addition, textit{Insight}-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although it did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, textit{Insight}-HXMT/HE provides one of the most stringent constraints (~10$^{-7}$ to 10$^{-6}$ erg/cm$^2$/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of textit{Insight}-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
VLBI and JVLA observations revealed that GW170817 involved a narrow jet ($ theta_j approx 4^circ $) that dominated the afterglow peak at our viewing angle, $ theta_{rm obs} approx 20^circ $. This implies that at the time of the afterglow peak, the ob served signal behaved like an afterglow of a top-hat jet seen at $ theta_{rm obs} gg theta_j $, and it can be modeled by analytic expressions that describe such jets. We use a set of numerical simulations to calibrate these analytic relations and obtain generic equations for the peak time and flux of such an afterglow as seen from various observing angles. Using the calibrated equations and the estimated parameters of GW170817, we estimate the detectability of afterglows from future double neutron star mergers during the Advanced LIGO/Virgo observation run O3. GW170817 took place at a relatively low-density environment. Afterglows of similar events will be detectable only at small viewing angles, $ theta_{rm obs} lesssim 20^circ $, and only $sim 20% $ of the GW detections of these events will be accompanied by a detectable afterglow. At higher densities, more typical to sGRB sites, up to $ 70% $ of the GW detections are expected to be followed by a detectable afterglow, typically at $ theta_{rm obs} sim 30^circ $. We also provide the latest time one should expect an afterglow detection. We find that for typical parameters, if the jet emission had not been detected within about a year after the merger, it is unlikely to be ever detected.
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
We present Hubble Space Telescope and Chandra imaging, combined with Very Large Telescope MUSE integral field spectroscopy of the counterpart and host galaxy of the first binary neutron star merger detected via gravitational wave emission by LIGO & V irgo, GW170817. The host galaxy, NGC 4993, is an S0 galaxy at z=0.009783. There is evidence for large, face-on spiral shells in continuum imaging, and edge-on spiral features visible in nebular emission lines. This suggests that NGC 4993 has undergone a relatively recent (<1 Gyr) ``dry merger. This merger may provide the fuel for a weak active nucleus seen in Chandra imaging. At the location of the counterpart, HST imaging implies there is no globular or young stellar cluster, with a limit of a few thousand solar masses for any young system. The population in the vicinity is predominantly old with <1% of any light arising from a population with ages <500 Myr. Both the host galaxy properties and those of the transient location are consistent with the distributions seen for short-duration gamma-ray bursts, although the source position lies well within the effective radius (r_e ~ 3 kpc), providing an r_e-normalized offset that is closer than ~90% of short GRBs. For the long delay time implied by the stellar population, this suggests that the kick velocity was significantly less than the galaxy escape velocity. We do not see any narrow host galaxy interstellar medium features within the counterpart spectrum, implying low extinction, and that the binary may lie in front of the bulk of the host galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا