ترغب بنشر مسار تعليمي؟ اضغط هنا

First Multimessenger Observations of a Neutron Star Merger

116   0   0.0 ( 0 )
 نشر من قبل Raffaella Margutti
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the first observations of the same celestial object with gravitational waves and light. * GW170817 was the first detection of a neutron star merger with gravitational waves. * The detection of a spatially coincident weak burst of $gamma$-rays (GRB 170817A) 1.7 s after the merger constituted the first electromagnetic detection of a gravitational wave source and established a connection between at least some cosmic short gamma-ray bursts (SGRBs) and binary neutron star mergers. * A fast-evolving optical and near-infrared transient (AT 2017gfo) associated with the event can be interpreted as resulting from the ejection of $sim$0.05 M$_{odot}$ of material enriched in r-process elements, finally establishing binary neutron star mergers as at least one source of r-process nucleosynthesis. * Radio and X-ray observations revealed a long-rising source that peaked $sim$160 d after the merger. Combined with the apparent superluminal motion of the associated VLBI source, these observations show that the merger produced a relativistic structured jet whose core was oriented $approx$ 20 deg from the line of sight and with properties similar to SGRBs. The jet structure likely results from the jet interaction with the merger ejecta. * The electromagnetic and gravitational wave information can be combined to produce constraints on the expansion rate of the universe and the equation of state of dense nuclear matter. These multimessenger endeavors will be a major emphasis for future work.



قيم البحث

اقرأ أيضاً

Binary neutron star mergers offer a new and independent means of measuring the Hubble constant $H_0$ by combining the gravitational-wave inferred source luminosity distance with its redshift obtained from electromagnetic follow-up. This method is lim ited by intrinsic degeneracy between the system distance and orbital inclination in the gravitational-wave signal. Observing the afterglow counterpart to a merger can further constrain the inclination angle, allowing this degeneracy to be partially lifted and improving the measurement of $H_0$. In the case of the binary neutron star merger GW170817, afterglow light-curve and imagery modeling thus allowed to improve the $H_0$ measurement by a factor of 3. However, systematic access to afterglow data is far from guaranteed. In fact, though each one allows a leap in $H_0$ precision, these afterglow counterparts should prove rare in forthcoming multimessenger campaigns. We combine models for emission and detection of gravitational-wave and electromagnetic radiation from binary neutron star mergers with realistic population models and estimates for afterglow inclination angle constraints. Using these models, we quantify how fast $H_0$ will be narrowed-down by successive multimessenger events with and without the afterglow. We find that, because of its rareness and though it greatly refines angle estimates, the afterglow counterpart should not significantly contribute to the measurement of $H_0$ in the long run.
Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and textit{Fermi}/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard textit{Insight}-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ($sim$1000 cm$^2$) and microsecond time resolution in 0.2-5 MeV. In addition, textit{Insight}-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although it did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, textit{Insight}-HXMT/HE provides one of the most stringent constraints (~10$^{-7}$ to 10$^{-6}$ erg/cm$^2$/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of textit{Insight}-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.
The first neutron star-neutron star (NS-NS) merger was discovered on August 17, 2017 through gravitational waves (GW170817) and followed with electromagnetic observations. This merger was detected in an old elliptical galaxy with no recent star forma tion. We perform a suite of numerical calculations to understand the formation mechanism of this merger. We probe three leading formation mechanisms of double compact objects: classical isolated binary star evolution, dynamical evolution in globular clusters and nuclear cluster formation to test whether they are likely to produce NS-NS mergers in old host galaxies. Our simulations with optimistic assumptions show current NS-NS merger rates at the level of 10^-2 yr^-1 from binary stars, 5 x 10^-5 yr^-1 from globular clusters and 10^-5 yr^-1 from nuclear clusters for all local elliptical galaxies (within 100 Mpc^3). These models are thus in tension with the detection of GW170817 with an observed rate 1.5 yr^-1 (per 100 Mpc^3; LIGO/Virgo estimate). Our results imply that either (i) the detection of GW170817 by LIGO/Virgo at their current sensitivity in an elliptical galaxy is a statistical coincidence; or that (ii) physics in at least one of our three models is incomplete in the context of the evolution of stars that can form NS-NS mergers; or that (iii) another very efficient (unknown) formation channel with a long delay time between star formation and merger is at play.
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
Neutron star mergers, referring to both binary neutron star and neutron star black hole mergers, are the canonical multimessenger events. They have been detected across the electromagnetic spectrum, have recently been detected in gravitational waves, and are likely to produce neutrinos over several decades in energy. The non-thermal prompt and afterglow emission of short gamma-ray bursts and the quasi-thermal emission from the radioactively powered kilonovae provide distinct insights into the physics of neutron star mergers. When combined with direct information on coalescence from gravitational waves and neutrinos these sources may become the best understood astrophysical transients. Multimessenger observations of these cataclysmic events will determine sources of gravitational waves and astrophysical neutrinos, enable precision cosmology, and unique tests of fundamental physics, the origin of heavy elements, the behavior of relativistic jets, and the equation of state of supranuclear matter. In this white paper we present a summary of the science discoveries possible with multimessenger observations of neutron star mergers and provide recommendations to enable them in the new era of time-domain, multimessenger astronomy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا