ﻻ يوجد ملخص باللغة العربية
Line coincidence photopumping is a process where the electrons of an atomic or molecular species are radiatively excited through the absorption of line emission from another species at a coincident wavelength. There are many instances of line coincidence photopumping in astrophysical sources at optical and ultraviolet wavelengths, with the most famous example being Bowen fluorescence (pumping of O III 303.80 A by He II), but none to our knowledge in X-rays. However, here we report on a scheme where a He-like line of Ne IX at 11.000 A is photopumped by He-like Na X at 11.003 A, which predicts significant intensity enhancement in the Ne IX 82.76 A transition under physical conditions found in solar flare plasmas. A comparison of our theoretical models with published X-ray observations of a solar flare obtained during a rocket flight provides evidence for line enhancement, with the measured degree of enhancement being consistent with that expected from theory, a truly surprising result. Observations of this enhancement during flares on stars other than the Sun would provide a powerful new diagnostic tool for determining the sizes of flare loops in these distant, spatially-unresolved, astronomical sources.
Previous estimates of the solar flare abundances of Si, S, Cl, Ar, and K from the RESIK X-ray crystal spectrometer on board the CORONAS-F spacecraft were made on the assumption of isothermal X-ray emission. We investigate the effect on these estimate
One way of imaging X-ray emission from solar flares is to measure Fourier components of the spatial X-ray source distribution. We present a new Compressed Sensing-based algorithm named VIS_CS, which reconstructs the spatial distribution from such Fou
We present an analysis of soft X-ray (SXR) and extreme-ultraviolet (EUV) observations of solar flares with an approximate C8 GOES class. Our constraint on peak GOES SXR flux allows for the investigation of correlations between various flare parameter
We present analysis of the magnetic field in seven solar flare regions accompanied by the pulsations of hard X-ray (HXR) emission. These flares were studied by Kuznetsov et al. (2016) (Paper~I), and chosen here because of the availability of the vect
We present the discovery of a relationship between the maximum ratio of the flare flux (namely, 0.5-4 Ang to the 1-8 Ang flux) and non-flare background (namely, the 1-8 Ang background flux), which clearly separates flares into classes by peak flux le