ﻻ يوجد ملخص باللغة العربية
We realize many sharp spectral bounds of the spectral radius of a nonnegative square matrix $C$ by using the largest real eigenvalues of suitable matrices of smaller sizes related to $C$ that are very easy to find. As applications, we give a sharp upper bound of the spectral radius of $C$ expressed by the sum of entries, the largest off-diagonal entry $f$ and the largest diagonal entry $d$ in $C$. We also give a new class of sharp lower bounds of the spectral radius of $C$ expressed by the above $d$ and $f$, the least row-sum $r_n$ and the $t$-th largest row-sum $r_t$ in $C$ satisfying $0<r_n-(n-t-1)f-dleq r_t-(n-t)f$, where $n$ is the size of $C$.
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. We also apply these bounds to various matrices associated with a graph or a digraph, obtain some new results or known results about
In this paper, we obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the di
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor. We also apply these bounds to the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph.
We obtain new bounds for the Laplacian spectral radius of a signed graph. Most of these new bounds have a dependence on edge sign, unlike previously known bounds, which only depend on the underlying structure of the graph. We then use some of these b
For $0leq alpha < 1$, the $mathcal{A}_{alpha}$-spectral radius of a $k$-uniform hypergraph $G$ is defined to be the spectral radius of the tensor $mathcal{A}_{alpha}(G):=alpha mathcal{D}(G)+(1-alpha) mathcal{A}(G)$, where $mathcal{D}(G)$ and $A(G)$ a