ترغب بنشر مسار تعليمي؟ اضغط هنا

A Sharp upper bound for the spectral radius of a nonnegative matrix and applications

98   0   0.0 ( 0 )
 نشر من قبل Xiao-Dong Zhang Prof.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of a graph or a digraph. These results are new or generalize some known results.



قيم البحث

اقرأ أيضاً

In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative irreducible matrix. We also apply these bounds to various matrices associated with a graph or a digraph, obtain some new results or known results about various spectral radii, including the adjacency spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance signless Laplacian spectral radius of a graph or a digraph.
In this paper, we obtain the sharp upper and lower bounds for the spectral radius of a nonnegative weakly irreducible tensor. We also apply these bounds to the adjacency spectral radius and signless Laplacian spectral radius of a uniform hypergraph.
We realize many sharp spectral bounds of the spectral radius of a nonnegative square matrix $C$ by using the largest real eigenvalues of suitable matrices of smaller sizes related to $C$ that are very easy to find. As applications, we give a sharp up per bound of the spectral radius of $C$ expressed by the sum of entries, the largest off-diagonal entry $f$ and the largest diagonal entry $d$ in $C$. We also give a new class of sharp lower bounds of the spectral radius of $C$ expressed by the above $d$ and $f$, the least row-sum $r_n$ and the $t$-th largest row-sum $r_t$ in $C$ satisfying $0<r_n-(n-t-1)f-dleq r_t-(n-t)f$, where $n$ is the size of $C$.
For a nonnegative weakly irreducible tensor $mathcal{A}$, we give some characterizations of the spectral radius of $mathcal{A}$, by using the digraph of tensors. As applications, some bounds on the spectral radius of the adjacency tensor and the sign less Laplacian tensor of the $k$-uniform hypergraphs are shown.
A fan $F_n$ is a graph consisting of $n$ triangles, all having precisely one common vertex. Currently, the best known bounds for the Ramsey number $R(F_n)$ are $9n/2-5 leq R(F_n) leq 11n/2+6$, obtained by Chen, Yu and Zhao. We improve the upper bound to $31n/6+O(1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا