ﻻ يوجد ملخص باللغة العربية
We propose a four-dimensional supersymmetric theory that deconstructs, in a particular limit, the six-dimensional $(2,0)$ theory of type $D_k$. This 4d theory is defined by a necklace quiver with alternating gauge nodes $mathrm{O}(2k)$ and $mathrm{Sp}(k)$. We test this proposal by comparing the 6d half-BPS index to the Higgs branch Hilbert series of the 4d theory. In the process, we overcome several technical difficulties, such as Hilbert series calculations for non-complete intersections, and the choice of $mathrm{O}$ versus $mathrm{SO}$ gauge groups. Consistently, the result matches the Coulomb branch formula for the mirror theory upon reduction to 3d.
The dimensional-deconstruction prescription of Arkani-Hamed, Cohen, Kaplan, Karch and Motl provides a mechanism for recovering the $A$-type (2,0) theories on $T^2$, starting from a four-dimensional $mathcal N=2$ circular-quiver theory. We put this co
We discuss how D=5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2,0) theory in six dimensions. It is known that the compactification of (2,0) theory on a circle leads to D=5 MSYM. A variety of argume
We study type-B conformal anomalies associated with $frac{1}{2}$-BPS Coulomb-branch operators in 4D $mathcal N=2$ superconformal field theories. When the vacuum preserves the conformal symmetry these anomalies coincide with the two-point function coe
We consider a twisted version of the abelian $(2,0)$ theory placed upon a Lorenzian six-manifold with a product structure, $M_6=C times M_4 $. This is done by an investigation of the free tensor multiplet on the level of equations of motion, where th
We consider (2,0) theory on a manifold M_6 that is a fibration of a spatial S^1 over some five-dimensional base manifold M_5. Initially, we study the free (2,0) tensor multiplet which can be described in terms of classical equations of motion in six