ﻻ يوجد ملخص باللغة العربية
We consider (2,0) theory on a manifold M_6 that is a fibration of a spatial S^1 over some five-dimensional base manifold M_5. Initially, we study the free (2,0) tensor multiplet which can be described in terms of classical equations of motion in six dimensions. Given a metric on M_6 the low energy effective theory obtained through dimensional reduction on the circle is a Maxwell theory on M_5. The parameters describing the local geometry of the fibration are interpreted respectively as the metric on M_5, a non-dynamical U(1) gauge field and the coupling strength of the resulting low energy Maxwell theory. We derive the general form of the action of the Maxwell theory by integrating the reduced equations of motion, and consider the symmetries of this theory originating from the superconformal symmetry in six dimensions. Subsequently, we consider a non-abelian generalization of the Maxwell theory on M_5. Completing the theory with Yukawa and phi^4 terms, and suitably modifying the supersymmetry transformations, we obtain a supersymmetric Yang-Mills theory which includes terms related to the geometry of the fibration.
In this note we consider the gauge field equation of motion for the dimensional reduction of the (2,0) tensor multiplet on singular circle fibrations. The fibrations are characterized by the corresponding U(1) action having a codimension four fixed p
We study twisted circle compactification of 6d $(2,0)$ SCFTs to 5d $mathcal{N} = 2$ supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6
We discuss how D=5 maximally supersymmetric Yang-Mills theory (MSYM) might be used to study or even to define the (2,0) theory in six dimensions. It is known that the compactification of (2,0) theory on a circle leads to D=5 MSYM. A variety of argume
We consider a twisted version of the abelian $(2,0)$ theory placed upon a Lorenzian six-manifold with a product structure, $M_6=C times M_4 $. This is done by an investigation of the free tensor multiplet on the level of equations of motion, where th
A $Q$-exact off-shell action is constructed for twisted abelian (2,0) theory on a Lorentzian six-manifold of the form $M_{1,5} = Ctimes M_4$, where $C$ is a flat two-manifold and $M_4$ is a general Euclidean four-manifold. The properties of this form