ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray timing analysis of Cyg X-3 using AstroSat/LAXPC: Detection of milli-hertz quasi-periodic oscillations during the flaring hard X-ray state

60   0   0.0 ( 0 )
 نشر من قبل Mayukh Pahari
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from Large Area X-ray Proportional Counter (LAXPC) on-board AstroSat. Consecutive lightcurves observed over a period of one year show the binary orbital period of 17253.56 +/- 0.19 sec. Another low-amplitude, slow periodicity of the order of 35.8 +/- 1.4 days is observed which may be due to the orbital precession as suggested earlier by Molteni et al. (1980). During the rising binary phase, power density spectra from different observations during flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ~5-8 mHz, ~12-14 mHz, ~18-24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2-sigma significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in the supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.

قيم البحث

اقرأ أيضاً

The Be X-ray Binary 4U 0115+63 was observed by Large Area X-ray Proportional Counter (LAXPC) instrument on AstroSat on 2015 October 24 during the peak of a giant Type II outburst. Prominent intensity oscillations at ~ 1 and ~ 2 mHz frequency were det ected during the outburst. Nuclear Spectroscopic Telescope Array (NuSTAR) observations made during the same outburst also show mHz quasi periodic oscillations (QPOs). Details of the oscillations and their characteristics deduced from LAXPC/AstroSat and NuSTAR observations are reported in this paper. Analysis of the archival Rossi X-ray Timing Explorer (RXTE)/Proportional Counter Array (PCA) data during 2001-11 also show presence of mHz QPOs during some of the outbursts and details of these QPOs are also reported. Possible models to explain the origin of the mHz oscillations are examined. Similar QPOs, albeit at higher frequencies, have been reported from other neutron star and black hole sources and both may have a common origin. Current models to explain the instability in the inner accretion disk causing the intense oscillations are discussed.
We study the radio/X-ray correlation in Cyg X-3. It has been known that the soft and hard X-ray fluxes in the hard spectral state are correlated positively and negatively, respectively, with the radio flux. We show that this implies that the observed $sim$1--100 keV flux (which is a fair approximation to the bolometric flux) is completely uncorrelated with the radio flux. We can recover a positive correlation (seen in other sources and expected theoretically) if the soft X-rays are strongly absorbed by a local medium. Then, however, the intrinsic X-ray spectrum of Cyg X-3 in its hard state becomes relatively soft, similar to that of an intermediate spectral state of black-hole binaries, but not to their true hard state. We also find the radio spectra in the hard state of Cyg X-3 are hard on average, and the flux distributions of the radio emission and soft X-rays can be described by sums of two log-normal functions. We compare Cyg X-3 with other X-ray binaries using colour-colour, colour-Eddington ratio and Eddington ratio-radio flux diagrams. We find Cyg X-3 to be spectrally most similar to GRS 1915+105, except that Cyg X-3 is substantially more radio loud, which appears to be due to its jet emission enhanced by interaction with the powerful stellar wind from the Wolf-Rayet donor.
We present X-ray spectral and timing behavior of Cyg X-3 as observed by AstroSat during the onset of a giant radio flare on 01-02 April 2017. Within a time-scale of few hours, the source shows a transition from the hypersoft state (HPS) to a more lum inous state (we termed as the very high state) which coincides with the time of the steep rise in radio flux density by an order of magnitude. Modeling the SXT and LAXPC spectra jointly in 0.5-70.0 keV, we found that the first few hours of the observation is dominated by the HPS with no significant counts above 17 keV. Later, an additional flat powerlaw component suddenly appeared in the spectra which extends to very high energies with the powerlaw photon index of 1.49 +/- 0.04. Such a flat powerlaw component has never been reported from Cyg X-3. Interestingly the fitted powerlaw model in 25-70 keV, when extrapolated to the radio frequency, predicts the radio flux density consistent with the trend measured from RATAN-600 telescope at 11.2 GHz. This provides a direct evidence of the synchrotron origin of flat X-ray powerlaw component and the most extensive monitoring of the broadband X-ray behavior at the moment of decoupling the giant radio jet base from the compact object in Cyg X-3. Using SXT and LAXPC observations, we determine the giant flare ejection time as MJD 57845.34 +/- 0.08 when 11.2 GHz radio flux density increases from ~100 to ~478 mJy.
We present model fits to the X-ray line spectrum of the well known High Mass X-ray binary Cyg X-3. The primary observational dataset is a spectrum taken with the $Chandra$ X-ray Observatory High Energy Transmission Grating (HETG) in 2006, though we c ompare it to all the other observations of this source taken so far by this instrument. We show that the density must be $geq 10^{12}$ cm$^{-3}$ in the region responsible for most of the emission. We discuss the influence of the dust scattering halo on the broad band spectrum and we argue that dust scattering and extinction is not the most likely origin for the narrow featureseen near the Si K edge. We identify the features of a wind in the profiles of the strong resonance lines and we show that the wind is more apparent in the lines from the lighter elements. We argue that this wind is most likely associated with the companion star. We show that the intensities of most lines can be fitted, crudely, by a single component photoionized model. However, the iron K lines do not fit with this model. We show that the iron K line variability as a function of orbital phase is different from the lower energy lines, which indicates that the lines arise in physically distinct regions. We discuss the interpretation of these results in the context of what is known about the system and similar sys
Large Area X-ray Proportional Counter (LAXPC) is one of the major AstroSat payloads. LAXPC instrument will provide high time resolution X-ray observations in 3 to 80 keV energy band with moderate energy resolution. A cluster of three co-aligned ident ical LAXPC detectors is used in AstroSat to provide large collection area of more than 6000 cm2 . The large detection volume (15 cm depth) filled with xenon gas at about 2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. With its broad energy range and fine time resolution (10 microsecond), LAXPC instrument is well suited for timing and spectral studies of a wide variety of known and transient X-ray sources in the sky. We have done extensive calibration of all LAXPC detectors using radioactive sources as well as GEANT4 simulation of LAXPC detectors. We describe in brief some of the results obtained during the payload verification phase along with LXAPC capabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا