ترغب بنشر مسار تعليمي؟ اضغط هنا

LAXPC / AstroSat Study of ~ 1 and ~ 2 mHz Quasi-periodic Oscillations in the Be/X-ray Binary 4U 0115+63 During its 2015 Outburst

198   0   0.0 ( 0 )
 نشر من قبل Jayashree Roy Dr
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Be X-ray Binary 4U 0115+63 was observed by Large Area X-ray Proportional Counter (LAXPC) instrument on AstroSat on 2015 October 24 during the peak of a giant Type II outburst. Prominent intensity oscillations at ~ 1 and ~ 2 mHz frequency were detected during the outburst. Nuclear Spectroscopic Telescope Array (NuSTAR) observations made during the same outburst also show mHz quasi periodic oscillations (QPOs). Details of the oscillations and their characteristics deduced from LAXPC/AstroSat and NuSTAR observations are reported in this paper. Analysis of the archival Rossi X-ray Timing Explorer (RXTE)/Proportional Counter Array (PCA) data during 2001-11 also show presence of mHz QPOs during some of the outbursts and details of these QPOs are also reported. Possible models to explain the origin of the mHz oscillations are examined. Similar QPOs, albeit at higher frequencies, have been reported from other neutron star and black hole sources and both may have a common origin. Current models to explain the instability in the inner accretion disk causing the intense oscillations are discussed.

قيم البحث

اقرأ أيضاً

99 - Y. Z. Ding , W. Wang (1 2021
In this paper, we presented a detailed timing analysis of a prominent outburst of 4U 0115+63 detected by textit{Insight}-HXMT in 2017 August. The spin period of the neutron star was determined to be $3.61398pm 0.00002$ s at MJD 57978. We measured the period variability and extract the orbital elements of the binary system. The angle of periastron evolved with a rate of $0.048pm0.003$ $yr^{-1}$. The light curves are folded to sketch the pulse profiles in different energy ranges. A multi-peak structure in 1-10 keV is clearly illustrated. We introduced wavelet analysis into our data analysis procedures to study QPO signals and perform a detailed wavelet analysis in many different energy ranges. Through the wavelet spectra, we report the discovery of a QPO at the frequency $sim 10$ mHz. In addition, the X-ray light curves showed multiple QPOs in the period of $sim 16-32 $ s and $sim 67- 200 $ s. We found that the $sim100$ s QPO was significant in most of the observations and energies. There exist positive relations between X-ray luminosity and their Q-factors and S-factors, while the QPO periods have no correlation with X-ray luminosity. In wavelet phase maps, we found that the pulse phase of $sim 67- 200 $ s QPO drifting frequently while the $sim 16-32 $ s QPO scarcely drifting. The dissipation of oscillations from high energy to low energy was also observed. These features of QPOs in 4U 0115+63 provide new challenge to our understanding of their physical origins.
The Be/X-ray transient 4U 0115+63 exhibited a giant, type-II outburst in October 2015. The source did not decay to its quiescent state but settled in a meta-stable plateau state (a factor ~10 brighter than quiescence) in which its luminosity slowly d ecayed. We used XMM-Newton to observe the system during this phase and we found that its spectrum can be well described using a black-body model with a small emitting radius. This suggests emission from hot spots on the surface, which is confirmed by the detection of pulsations. In addition, we obtained a relatively long (~7.9 ksec) Swift/XRT observation ~35 days after our XMM-Newton one. We found that the source luminosity was significantly higher and, although the spectrum could be fitted with a black-body model the temperature was higher and the emitting radius smaller. Several weeks later the system started a sequence of type-I accretion outbursts. In between those outbursts, the source was marginally detected with a luminosity consistent with its quiescent level. We discuss our results in the context of the three proposed scenarios (accretion down to the magnestospheric boundary, direct accretion onto neutron star magnetic poles or cooling of the neutron star crust) to explain the plateau phase.
In 2017, the Be/X-ray transient 4U 0115+63 exhibited a new type-II outburst that was two times fainter than its 2015 giant outburst (in the Swift/BAT count rates). Despite this difference between the two bright events, the source displayed similar X- ray behaviour after these periods. Once the outbursts ceased, the source did not transit towards quiescence directly, but was detected about a factor of 10 above its known quiescent level. It eventually decayed back to quiescence over time scales of months. In this paper we present the results of our Swift monitoring campaign, and an XMM-Newton observation of 4U 0115+63 during the decay of the 2017 type-II outburst, and its subsequent low-luminosity behaviour. We discuss the possible origin of the decaying source emission at this low-level luminosity, which has now been shown as a recurrent phenomenon, in the framework of the two proposed scenarios to explain this faint state: cooling from an accretion-heated neutron-star crust or continuous low-level accretion. In addition, we compare the outcome of our study with the results we obtained from the 2015/2016 monitoring campaign on this source.
We present here results from the X-ray timing and spectral analysis of the X-ray binary Cyg X-3 using observations from Large Area X-ray Proportional Counter (LAXPC) on-board AstroSat. Consecutive lightcurves observed over a period of one year show t he binary orbital period of 17253.56 +/- 0.19 sec. Another low-amplitude, slow periodicity of the order of 35.8 +/- 1.4 days is observed which may be due to the orbital precession as suggested earlier by Molteni et al. (1980). During the rising binary phase, power density spectra from different observations during flaring hard X-ray state show quasi-periodic oscillations (QPOs) at ~5-8 mHz, ~12-14 mHz, ~18-24 mHz frequencies at the minimum confidence of 99%. However, during the consecutive binary decay phase, no QPO is detected up to 2-sigma significance. Energy-dependent time-lag spectra show soft lag (soft photons lag hard photons) at the mHz QPO frequency and the fractional rms of the QPO increases with the photon energy. During the binary motion, the observation of mHz QPOs during the rising phase of the flaring hard state may be linked to the increase in the supply of the accreting material in the disk and corona via stellar wind from the companion star. During the decay phase, the compact source moves in the outer wind region causing the decrease in the supply of material for accretion. This may cause weakening of the mHz QPOs below the detection limit. This is also consistent with the preliminary analysis of the orbital phase-resolved energy spectra presented in this paper.
91 - P. Reig 2006
4u 0115+63 is one of the most active and best studied Be/X-ray transients. Previous studies of 4u0115+63 have led to the suggestion that it undergoes relatively fast quasi-cyclic activity. However, due to the lack of good coverage of the observations , the variability time scales are uncertain. Our objective is to investigate the long-term behaviour of 4u 0115+63 to confirm its quasi-cyclic nature and to explain its correlated optical/IR and X-ray variability. We have performed optical/IR photometric observations and optical spectroscopic observations of 4u 0115+63 over the last decade with unprecedented coverage. We have focused on the Halpha line variability and the long-term changes of the photometric magnitudes and colours and investigated these changes in correlation with the X-ray activity of the source. results The optical and infrared emission is characterised by cyclic changes with a period of ~ 5 years. This long-term variability is attributed to the state of the circumstellar disc around the Be star companion. Each cycle involves a low state when the disc is very weak or absent and the associated low amplitude variability is orbitally modulated and a high state when a perturbed disc precesses, giving rise to fast and large amplitude photometric changes. X-ray outbursts in 4u 0115+63 come in pairs, i.e., two in every cycle. However, sometimes the second outburst is missing. Our results can be explained within the framework of the decretion disc model. The neutron star acts as the perturbing body, truncating and distorting the disc. The first outburst would occur before the disc is strongly perturbed. The second outburst leads to the dispersal of the disc and marks the end of the perturbed phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا