ترغب بنشر مسار تعليمي؟ اضغط هنا

Use of Wedge Absorbers in MICE

99   0   0.0 ( 0 )
 نشر من قبل Neuffer, David V.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Wedge absorbers are needed to obtain longitudinal cooling in ionization cooling. They also can be used to obtain emittance exchanges between longitudinal and transverse phase space. There can be large exchanges in emittance, even with single wedges. In the present note we explore the use of wedge absorbers in the MICE experiment to obtain transverse-longitudinal emittance exchanges within present and future operational conditions. The same wedge can be used to explore direct and reverse emittance exchange dynamics, where direct indicates a configuration that reduces momentum spread and reverse is a configuration that increases momentum spread. Analytical estimated and ICOOL and G4BeamLine simulations of the exchanges at MICE parameters are presented. Large exchanges can be obtained in both reverse and direct configurations.

قيم البحث

اقرأ أيضاً

Emittance exchange mediated by wedge absorbers is required for longitudinal ionization cooling and for final transverse emittance minimization for a muon collider. A wedge absorber within the MICE beam line could serve as a demonstration of the type of emittance exchange needed for 6-D cooling, including the configurations needed for muon colliders. Parameters for this test are explored in simulation and possible experimental configurations with simulated results are presented.
Low energy muon experiments such as mu2e and g-2 have a limited energy spread acceptance. Following techniques developed in muon cooling studies and the MICE experiment, the number of muons within the desired energy spread can be increased by the mat ched use of wedge absorbers. More generally, the phase space of muon beams can be manipulated by absorbers in beam transport lines. Applications with simulation results are presented.
A high-energy muon collider scenario requires a final cooling system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce t ransverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittances by a factor of ~25. Implementation will require optical matching of the exiting beam into downstream acceleration systems.
76 - M. Bonesini 2015
The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling of a muon beam. The demonstration is based on a simplified version of a neutrino factory cooling channel. As the emittance measu rement will be done on a particle-by-particle basis, sophisticated beam instrumentation has been developed to measure particle coordinates and timing vs RF. The muon beamline has been characterized and a preliminary measure of the beam emittance, using a particle-by-particle method with only the TOF detector system, has been performed (MICE STEP I). Data taking for the study of the properties that determine the cooling performance (MICE Step IV) has just started in 2015, while the demonstration of ionization cooling with re-acceleration is foreseen for 2017.
Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. This paper documents the performance of the detectors used in MICE to measure the muon-beam parameters, and the physical properties of the liquid hydrogen energy absorber during running.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا