ﻻ يوجد ملخص باللغة العربية
We study the problem of testing identity against a given distribution with a focus on the high confidence regime. More precisely, given samples from an unknown distribution $p$ over $n$ elements, an explicitly given distribution $q$, and parameters $0< epsilon, delta < 1$, we wish to distinguish, {em with probability at least $1-delta$}, whether the distributions are identical versus $varepsilon$-far in total variation distance. Most prior work focused on the case that $delta = Omega(1)$, for which the sample complexity of identity testing is known to be $Theta(sqrt{n}/epsilon^2)$. Given such an algorithm, one can achieve arbitrarily small values of $delta$ via black-box amplification, which multiplies the required number of samples by $Theta(log(1/delta))$. We show that black-box amplification is suboptimal for any $delta = o(1)$, and give a new identity tester that achieves the optimal sample complexity. Our new upper and lower bounds show that the optimal sample complexity of identity testing is [ Thetaleft( frac{1}{epsilon^2}left(sqrt{n log(1/delta)} + log(1/delta) right)right) ] for any $n, varepsilon$, and $delta$. For the special case of uniformity testing, where the given distribution is the uniform distribution $U_n$ over the domain, our new tester is surprisingly simple: to test whether $p = U_n$ versus $d_{mathrm TV}(p, U_n) geq varepsilon$, we simply threshold $d_{mathrm TV}(widehat{p}, U_n)$, where $widehat{p}$ is the empirical probability distribution. The fact that this simple plug-in estimator is sample-optimal is surprising, even in the constant $delta$ case. Indeed, it was believed that such a tester would not attain sublinear sample complexity even for constant values of $varepsilon$ and $delta$.
We investigate the problem of identity testing for multidimensional histogram distributions. A distribution $p: D rightarrow mathbb{R}_+$, where $D subseteq mathbb{R}^d$, is called a $k$-histogram if there exists a partition of the domain into $k$ ax
We study the fundamental problems of (i) uniformity testing of a discrete distribution, and (ii) closeness testing between two discrete distributions with bounded $ell_2$-norm. These problems have been extensively studied in distribution testing and
In the group testing problem the aim is to identify a small set of $ksim n^theta$ infected individuals out of a population size $n$, $0<theta<1$. We avail ourselves of a test procedure capable of testing groups of individuals, with the test returning
Minimum storage regenerating (MSR) codes are MDS codes which allow for recovery of any single erased symbol with optimal repair bandwidth, based on the smallest possible fraction of the contents downloaded from each of the other symbols. Recently, ce
We propose a new setting for testing properties of distributions while receiving samples from several distributions, but few samples per distribution. Given samples from $s$ distributions, $p_1, p_2, ldots, p_s$, we design testers for the following p