ﻻ يوجد ملخص باللغة العربية
In this paper, two types of Lyapunov exponents: random Lyapunov exponents and directional Lyapunov exponents, and the corresponding entropies: random entropy and directional entropy, are considered for smooth $mathbb{Z}^k$-actions. The close relation among these quantities are investigated and the formulas of them are given via the Lyapunov exponents of the generators.
In this paper, entropies, including measure-theoretic entropy and topological entropy, are considered for random $mathbb{Z}^k$-actions which are generated by random compositions of the generators of $mathbb{Z}^k$-actions. Applying Pesins theory for c
We obtain a sufficient condition for a substitution ${mathbb Z}$-action to have pure singular spectrum in terms of the top Lyapunov exponent of the spectral cocycle introduced in arXiv:1802.04783 by the authors. It is applied to a family of examples,
We study directional mean dimension of $mathbb{Z}^k$-actions (where $k$ is a positive integer). On the one hand, we show that there is a $mathbb{Z}^2$-action whose directional mean dimension (considered as a $[0,+infty]$-valued function on the torus)
Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce
We study the problem of embedding arbitrary $mathbb{Z}^k$-actions into the shift action on the infinite dimensional cube $left([0,1]^Dright)^{mathbb{Z}^k}$. We prove that if a $mathbb{Z}^k$-action satisfies the marker property (in particular if it is