ﻻ يوجد ملخص باللغة العربية
Two different types of perturbations of the Lorenz 63 dynamical system for Rayleigh-Benard convection by multiplicative noise -- called stochastic advection by Lie transport (SALT) noise and fluctuation-dissipation (FD) noise -- are found to produce qualitatively different effects, possibly because the total phase-space volume contraction rates are different. In the process of making this comparison between effects of SALT and FD noise on the Lorenz 63 system, a stochastic version of a robust deterministic numerical algorithm for obtaining the individual numerical Lyapunov exponents was developed. With this stochastic version of the algorithm, the value of the sum of the Lyapunov exponents for the FD noise was found to differ significantly from the value of the deterministic Lorenz 63 system, whereas the SALT noise preserves the Lorenz 63 value with high accuracy. The Lagrangian averaged version of the SALT equations (LA SALT) is found to yield a closed deterministic subsystem for the expected solutions which is found to be isomorphic to the original Lorenz 63 dynamical system. The solutions of the closed chaotic subsystem, in turn, drive a linear stochastic system for the fluctuations of the LA SALT solutions around their expected values.
We introduce the notion of Lyapunov exponents for random dynamical systems, conditioned to trajectories that stay within a bounded domain for asymptotically long times. This is motivated by the desire to characterize local dynamical properties in the
In an algebraic family of rational maps of $mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and
The classic Lorenz equations were originally derived from the two-dimensional Rayleigh-Benard convection system considering an idealised case with the lowest order of harmonics. Although the low-order Lorenz equations have traditionally served as a m
The Kuramoto-Sivashinsky equation is a prototypical chaotic nonlinear partial differential equation (PDE) in which the size of the spatial domain plays the role of a bifurcation parameter. We investigate the changing dynamics of the Kuramoto-Sivashin
We study the asymptotic behavior of the Lyapunov exponent in a meromorphic family of random products of matrices in SL(2, C), as the parameter converges to a pole. We show that the blow-up of the Lyapunov exponent is governed by a quantity which can