ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust, open-source removal of systematics in Kepler data

119   0   0.0 ( 0 )
 نشر من قبل Suzanne Aigrain
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Aigrain




اسأل ChatGPT حول البحث

We present ARC2 (Astrophysically Robust Correction 2), an open-source Python-based systematics-correction pipeline to correct for the Kepler prime mission long cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuities in the light curves, then removes trends common to many light curves. These trends are modelled using the publicly available co-trending basis vectors, within an (approximate) Bayesian framework with `shrinkage priors to minimise the risk of over-fitting and the injection of any additional noise into the corrected light curves, while keeping any astrophysical signals intact. We show that the ARC2 pipelines performance matches that of the standard Kepler PDC-MAP data products using standard noise metrics, and demonstrate its ability to preserve astrophysical signals using injection tests with simulated stellar rotation and planetary transit signals. Although it is not identical, the ARC2 pipeline can thus be used as an open source alternative to PDC-MAP, whenever the ability to model the impact of the systematics removal process on other kinds of signal is important.



قيم البحث

اقرأ أيضاً

Space-based transit search missions such as Kepler are collecting large numbers of stellar light curves of unprecedented photometric precision and time coverage. However, before this scientific goldmine can be exploited fully, the data must be cleane d of instrumental artefacts. We present a new method to correct common-mode systematics in large ensembles of very high precision light curves. It is based on a Bayesian linear basis model and uses shrinkage priors for robustness, variational inference for speed, and a de-noising step based on empirical mode decomposition to prevent the introduction of spurious noise into the corrected light curves. After demonstrating the performance of our method on a synthetic dataset, we apply it to the first month of Kepler data. We compare the results, which are publicly available, to the output of the Kepler pipelines pre-search data conditioning, and show that the two generally give similar results, but the light curves corrected using our approach have lower scatter, on average, on both long and short timescales. We finish by discussing some limitations of our method and outlining some avenues for further development. The trend-corrected data produced by our approach are publicly available.
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treas ure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic noise sources must be performed before any analysis. The TESS Data for Asteroseismology (TDA) group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics to meet expectations and to be applicable to a wide range of different intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady-state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on TASOC and MAST.
We present the Exoplanet Simple Orbit Fitting Toolbox (ExoSOFT), a new, open-source suite to fit the orbital elements of planetary or stellar mass companions to any combination of radial velocity and astrometric data. To explore the parameter space o f Keplerian models, ExoSOFT may be operated with its own multi-stage sampling approach, or interfaced with third-party tools such as emcee. In addition, ExoSOFT is packaged with a collection of post-processing tools to analyze and summarize the results. Although only a few systems have been observed with both the radial velocity and direct imaging techniques, this number will increase thanks to upcoming spacecraft and ground based surveys. Providing both forms of data enables simultaneous fitting that can help break degeneracies in the orbital elements that arise when only one data type is available. The dynamical mass estimates this approach can produce are important when investigating the formation mechanisms and subsequent evolution of substellar companions. ExoSOFT was verified through fitting to artificial data and was implemented using the Python and Cython programming languages; available for public download at https://github.com/kylemede/ExoSOFT under the GNU General Public License v3.
High-precision time series photometry with the Kepler satellite has been crucial to our understanding both of exoplanets, and via asteroseismology, of stellar physics. After the failure of two reaction wheels, the Kepler satellite has been repurposed as Kepler-2 (K2), observing fields close to the ecliptic plane. As these fields contain many more bright stars than the original Kepler field, K2 provides an unprecedented opportunity to study nearby objects amenable to detailed follow-up with ground-based instruments. Due to bandwidth constraints, only a small fraction of pixels can be downloaded, with the result that most bright stars which saturate the detector are not observed. We show that engineering data acquired for photometric calibration, consisting of collateral `smear measurements, can be used to reconstruct light curves for bright targets not otherwise observable with Kepler/K2. Here we present some examples from Kepler Quarter 6 and K2 Campaign 3, including the delta Scuti variables HD 178875 and 70 Aqr, and the red giant HR 8500 displaying solar-like oscillations. We compare aperture and smear photometry where possible, and also study targets not previously observed. These encouraging results suggest this new method can be applied to most Kepler and K2 fields.
We describe for the first time in the scientific literature the Planetary Ephemeris Program (PEP), an open-source general-purpose astrometric data analysis program. We discuss, in particular, the implementation of pulsar timing analysis, which was re cently upgraded in PEP to handle more options. This implementation was done independently of other pulsar programs, with minor exceptions that we discuss. We illustrate the implementation of this capability by comparing the post-fit residuals from the analyses of time-of-arrival observations by both PEP and Tempo2. The comparison shows substantial agreement: 22 ns rms differences for 1,065 pulse time-of-arrival measurements for the millisecond pulsar in a binary system, PSR J1909-3744 (pulse period 2.947108 ms; full-width half-maximum of pulse 43 $mu$s) for epochs in the interval from December 2002 to February 2011.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا