ﻻ يوجد ملخص باللغة العربية
Data from the Transiting Exoplanet Survey Satellite (TESS) has produced of order one million light curves at cadences of 120 s and especially 1800 s for every ~27-day observing sector during its two-year nominal mission. These data constitute a treasure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic noise sources must be performed before any analysis. The TESS Data for Asteroseismology (TDA) group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics to meet expectations and to be applicable to a wide range of different intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady-state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on TASOC and MAST.
Over the last two decades, asteroseismology has increasingly proven to be the observational tool of choice for the study of stellar physics, aided by the high quality of data available from space-based missions such as CoRoT, Kepler, K2 and TESS. TES
We present ARC2 (Astrophysically Robust Correction 2), an open-source Python-based systematics-correction pipeline to correct for the Kepler prime mission long cadence light curves. The ARC2 pipeline identifies and corrects any isolated discontinuiti
The Transiting Exoplanet Survey Satellite (TESS) is NASAs latest space telescope dedicated to the discovery of transiting exoplanets around nearby stars. Besides the main goal of the mission, asteroseismology is an important secondary goal and very r
We present K2SC (K2 Systematics Correction), a Python pipeline to model instrumental systematics and astrophysical variability in light curves from the K2 mission. K2SC uses Gaussian process regression to model position-dependent systematics and time
NASAs TESS mission citep{tess} has produced high precision photometry of millions of stars to the community. The majority of TESS observations have a duration of $approx$27 days, corresponding to a single observation during a TESS sector. A small sub