ﻻ يوجد ملخص باللغة العربية
Recently a large negative longitudinal (parallel to the magnetic field) magnetoresistance was observed in Weyl and Dirac semimetals. It is believed to be related to the chiral anomaly associated with topological electron band structure of these materials. We show that in a certain range of parameters such a phenomenon can also exist in conventional centrosymmetric and time reversal conductors, lacking topological protection of the electron spectrum and the chiral anomaly. We also discuss the magnetic field enhancement of the longitudinal components of the thermal conductivity and thermoelectric tensors.
Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum w
Negative longitudinal magnetoresistance (NLMR) is shown to occur in topological materials in the extreme quantum limit, when a magnetic field is applied parallel to the excitation current. We perform pulsed and DC field measurements on Pb1-xSnxSe epi
We have studied magneto transport in the single-band, quasi-two-dimensional metals PdCoO2 and PtCoO2, which have extremely long mean free paths. We observer a strong temperature dependence of the Hall resistivity in small applied, fields, linked to a
We report on high-field angle-dependent magneto-transport measurements on epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At low temperature, we observe quantum oscillations that demonstrate the simultaneous presence of bul
We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric and the sound absorption coefficients exhibit strong and anisotropic magnetic field de