ترغب بنشر مسار تعليمي؟ اضغط هنا

Negative longitudinal magnetoresistance from anomalous N=0 Landau level in topological materials

79   0   0.0 ( 0 )
 نشر من قبل Badih Assaf
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Negative longitudinal magnetoresistance (NLMR) is shown to occur in topological materials in the extreme quantum limit, when a magnetic field is applied parallel to the excitation current. We perform pulsed and DC field measurements on Pb1-xSnxSe epilayers where the topological state can be chemically tuned. The NLMR is observed in the topological state, but is suppressed and becomes positive when the system becomes trivial. In a topological material, the lowest N=0 conduction Landau level disperses down in energy as a function of increasing magnetic field, while the N=0 valence Landau level disperses upwards. This anomalous behavior is shown to be responsible for the observed NLMR. Our work provides an explanation of the outstanding question of NLMR in topological insulators and establishes this effect as a possible hallmark of bulk conduction in topological matter.


قيم البحث

اقرأ أيضاً

Recently a large negative longitudinal (parallel to the magnetic field) magnetoresistance was observed in Weyl and Dirac semimetals. It is believed to be related to the chiral anomaly associated with topological electron band structure of these mater ials. We show that in a certain range of parameters such a phenomenon can also exist in conventional centrosymmetric and time reversal conductors, lacking topological protection of the electron spectrum and the chiral anomaly. We also discuss the magnetic field enhancement of the longitudinal components of the thermal conductivity and thermoelectric tensors.
Negative longitudinal magnetoresistances (NLMRs) have been recently observed in a variety of topological materials and often considered to be associated with Weyl fermions that have a defined chirality. Here we report NLMRs in non-Weyl GaAs quantum w ells. In the absence of a magnetic field the quantum wells show a transition from semiconducting-like to metallic behaviour with decreasing temperature. We observed pronounced NLMRs up to 9 Tesla at temperatures above the transition and weak NLMRs in low magnetic fields at temperatures close to the transition and below 5 K. The observed NLMRs show various types of magnetic field behaviour resembling those reported in topological materials. We attribute them to microscopic disorder and use a phenomenological three-resistor model to account for their various features. Our results showcase a new contribution of microscopic disorder in the occurrence of novel phenomena. They may stimulate further work on tuning electronic properties via disorder/defect nano-engineering.
The minimum of 4-terminal conductance occurring at its charge neutral point has proven to be a robust empirical feature of graphene, persisting with changes to temperature, applied magnetic field, substrate, and layer thickness, though the theoretica l mechanisms involved in transport about this point -- vanishing density of states, conventional band gap opening, and broken symmetry quantum Hall mobility gaps -- vary widely depending on the regime. In this paper, we report on observations of a regime where the 4-terminal conductance minimum ceases to exist: transport in monolayer graphene connected to bilayer graphene during the onset of the quantum Hall effect. As monolayer and bilayer graphene have distinct zero-energy Landau levels that form about the charge neutral point, our observations suggest that competitions between the differing many-body orderings of these states as they emerge may underlie this anomalous conductance.
Magnetotransport measurements are a popular way of characterizing the electronic structure of topological materials and often the resulting datasets cannot be described by the well-known Drude model due to large, non-parabolic contributions. In this work, we focus on the effects of magnetic fields on topological materials through a Zeeman term included in the model Hamiltonian. To this end, we re-evaluate the simplifications made in the derivations of the Drude model and pinpoint the scattering time and Fermi velocity as Zeeman-term dependent factors in the conductivity tensor. The driving mechanisms here are the aligment of spins along the magnetic field direction, which allows for backscattering, and a significant change to the Fermi velocity by the opening of a hybridization gap. After considering 2D and 3D Dirac states, as well as 2D Rashba surface states and the quasi-2D bulk states of 3D topological insulators, we find that the 2D Dirac states on the surfaces of 3D topological insulators produce magnetoresistance, that is significant enough to be noticable in experiments. As this magnetoresistance effect is strongly dependent on the spin-orbit energy, it can be used as a telltale sign of a Fermi energy located close to the Dirac point.
The entanglement entropy of the incompressible states of a realistic quantum Hall system in the second Landau level are studied by direct diagonalization. The subdominant term to the area law, the topological entanglement entropy, which is believed t o carry information about topologic order in the ground state, was extracted for filling factors nu = 12/5 and nu = 7/3. While it is difficult to make strong conclusions about nu = 12/5, the nu = 7/3 state appears to be very consistent with the topological entanglement entropy for the k=4 Read-Rezayi state. The effect of finite thickness corrections to the Coulomb potential used in the direct diagonalization are also systematically studied.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا