ﻻ يوجد ملخص باللغة العربية
We compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and axial vector current operators made from HISQ quarks, clover quarks and from combining HISQ and clover fields. This allows us to test expectations for the renormalisation factors based on perturbative QCD, with implications for the error budget of lattice QCD calculations of the matrix elements of clover-staggered $b$-light weak currents, as well as further HISQ calculations of the hadronic vacuum polarisation. We also compare the approach to the (same) continuum limit in clover and HISQ formalisms for the mass and decay constant of the $phi$ meson. Our final results for these parameters, using single-meson correlators and neglecting quark-line disconnected diagrams are: $m_{phi} =$ 1.023(5) GeV and $f_{phi} = $ 0.238(3) GeV in good agreement with experiment. The results come from calculations in the HISQ formalism using gluon fields that include the effect of $u$, $d$, $s$ and $c$ quarks in the sea with three lattice spacing values and $m_{u/d}$ values going down to the physical point.
The Fermilab Lattice and MILC collaborations have shown in one-loop lattice QCD perturbation theory that the renormalization constants of vector and axial-vector mixed clover-asqtad currents are closely related to the product of those for clover-clov
We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the
We present a progress report on new calculations of B and B_s meson decay constants employing NRQCD heavy and HISQ light valence quarks and using MILC N_f = 2+1 AsqTad lattices. Bare quark masses have been retuned in accord with HPQCDs new r_1 scale.
We revisit the static potential for the $Q Q bar Q bar Q$ system using SU(3) lattice simulations, studying both the colour singlets groundstate and first excited state. We consider geometries where the two static quarks and the two anti-quarks are at
On a lattice with 2+1-flavor dynamical domain-wall fermions at the physical pion mass, we calculate the decay constants of $D_{s}^{(*)}$, $D^{(*)}$ and $phi$. The lattice size is $48^3times96$, which corresponds to a spatial extension of $sim5.5$ fm