ﻻ يوجد ملخص باللغة العربية
The Fermilab Lattice and MILC collaborations have shown in one-loop lattice QCD perturbation theory that the renormalization constants of vector and axial-vector mixed clover-asqtad currents are closely related to the product of those for clover-clover and asqtad-asqtad (local) vector currents. To be useful for future higher precision calculations this relationship must be valid beyond one-loop and very general. We test its validity nonperturbatively using clover and Highly Improved Staggered (HISQ) strange quarks, utilising the absolute normalization of the HISQ temporal axial current. We find that the renormalization of the mixed current differs from the square root of the product of the pure HISQ and pure clover currents by $2-3%$. We also compare discretization errors between the clover and HISQ formalisms.
We present the nonperturbative computation of renormalization factors in the RI-(S)MOM schemes for the QCD gauge field ensembles generated by the CLS (coordinated lattice simulations) effort with three flavors of nonperturbatively improved Wilson (cl
Quark bilinear operators with staple-shaped Wilson lines are used to study transverse-momentum-dependent parton distribution functions (TMDPDFs) from lattice quantum chromodynamics (QCD). Here, the renormalization factors for the isovector operators,
We compare correlators for pseudoscalar and vector mesons made from valence strange quarks using the clover quark and highly improved staggered quark (HISQ) formalisms in full lattice QCD. We use fully nonperturbative methods to normalise vector and
Nonperturbative QCD corrections are important to many low-energy electroweak observables, for example the muon magnetic moment. However, hadronic corrections also play a significant role at much higher energies due to their impact on the running of s
Recent developments in non-perturbative renormalization for lattice QCD are reviewed with a particular emphasis on RI/MOM scheme and its variants, RI/SMOM schemes. Summary of recent developments in Schroedinger functional scheme, as well as the summa