ﻻ يوجد ملخص باللغة العربية
In this paper we study emph{threefolds isogenous to a product of mixed type} i.e. quotients of a product of three compact Riemann surfaces $C_i$ of genus at least two by the action of a finite group $G$, which is free, but not diagonal. In particular, we are interested in the systematic construction and classification of these varieties. Our main result is the full classification of threefolds isogenous to a product of mixed type with $chi(mathcal O_X)=-1$ assuming that any automorphism in $G$, which restricts to the trivial element in $Aut(C_i)$ for some $C_i$, is the identity on the product. Since the holomorphic Euler-Poincare-characteristic of a smooth threefold of general type with ample canonical class is always negative, these examples lie on the boundary, in the sense of threefold geography. To achieve our result we use techniques from computational group theory. Indeed, we develop a MAGMA algorithm to classify these threefolds for any given value of $chi(mathcal O_X)$.
We give new contributions to the existence problem of canonical surfaces of high degree. We construct several families (indeed, connected components of the moduli space) of surfaces $S$ of general type with $p_g=5,6$ whose canonical map has image $Si
A complex surface $S$ is said to be isogenous to a product if $S$ is a quotient $S=(C_1 times C_2)/G$ where the $C_i$s are curves of genus at least two, and $G$ is a finite group acting freely on $C_1 times C_2$. In this paper we classify all regular
Let $S$ be a surface isogenous to a product of curves of unmixed type. After presenting several results useful to study the cohomology of $S$ we prove a structure theorem for the cohomology of regular surfaces isogenous to a product of unmixed type w
This is an example on the cohomology of threefolds.
We study the conormal sheaves and singular schemes of 1-dimensional foliations on smooth projective varieties $X$ of dimension 3 and Picard rank 1. We prove that if the singular scheme has dimension 0, then the conormal sheaf is $mu$-stable whenever