We study the conormal sheaves and singular schemes of 1-dimensional foliations on smooth projective varieties $X$ of dimension 3 and Picard rank 1. We prove that if the singular scheme has dimension 0, then the conormal sheaf is $mu$-stable whenever
the tangent bundle $TX$ is stable, and apply this fact to the characterization of certain irreducible components of the moduli space of rank 2 reflexive sheaves on $mathbb{P}^3$ and on a smooth quadric hypersurface $Q_3subsetmathbb{P}^4$. Finally, we give a classification of local complete intersection foliations, that is, foliations with locally free conormal sheaves, of degree 0 and 1 on $Q_3$.
This paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds threedimensional, with Picard number equal to one. We study the relations between alge
bro-geometric properties of the singular set of singular holomorphic distributions and their associated sheaves. We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically Cohen Macaulay (aCM) on smooth weighted projective complete intersection Fano manifolds threefold. We also prove that a codimension one locally free distribution with trivial canonical bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either splits or it is stable.
We show the cohomological monodromy for the universal family of smooth cubic threefolds does not factor through the genus five mapping class group. This gives a geometric group theory perspective on the well-known irrationality of cubic threefolds.
In this paper we study emph{threefolds isogenous to a product of mixed type} i.e. quotients of a product of three compact Riemann surfaces $C_i$ of genus at least two by the action of a finite group $G$, which is free, but not diagonal. In particular
, we are interested in the systematic construction and classification of these varieties. Our main result is the full classification of threefolds isogenous to a product of mixed type with $chi(mathcal O_X)=-1$ assuming that any automorphism in $G$, which restricts to the trivial element in $Aut(C_i)$ for some $C_i$, is the identity on the product. Since the holomorphic Euler-Poincare-characteristic of a smooth threefold of general type with ample canonical class is always negative, these examples lie on the boundary, in the sense of threefold geography. To achieve our result we use techniques from computational group theory. Indeed, we develop a MAGMA algorithm to classify these threefolds for any given value of $chi(mathcal O_X)$.
The standard period-index conjecture for the Brauer group of a field of transcendence degree 2 over a $p$-adic field predicts that the index divides the cube of the period. Using Gabbers theory of prime-to-$ell$ alterations and the deformation theory
of twisted sheaves, we prove that the index divides the fourth power of the period for every Brauer class whose period is prime to $6p$, giving the first uniform period-index bounds over such fields.