ﻻ يوجد ملخص باللغة العربية
In cite{Chen:2016fgi} we proposed a differential operator for the evaluation of the multi-dimensional residues on isolated (zero-dimensional) poles.In this paper we discuss some new insight on evaluating the (generalized) Cachazo-He-Yuan (CHY) forms of the scattering amplitudes using this differential operator. We introduce a tableau representation for the coefficients appearing in the proposed differential operator. Combining the tableaux with the polynomial forms of the scattering equations, the evaluation of the generalized CHY form becomes a simple combinatoric problem. It is thus possible to obtain the coefficients arising in the differential operator in a straightforward way. We present the procedure for a complete solution of the $n$-gon amplitudes at one-loop level in a generalized CHY form. We also apply our method to fully evaluate the one-loop five-point amplitude in the maximally supersymmetric Yang-Mills theory; the final result is identical to the one obtained by Q-Cut.
We review the covariant canonical formalism initiated by DAdda, Nelson and Regge in 1985, and extend it to include a definition of form-Poisson brackets (FPB) for geometric theories coupled to $p$-forms, gauging free differential algebras. The form-L
We calculate the chiral string amplitude in pure spinor formalism and take four point amplitude as an example. The method could be easily generalized to $N$ point amplitude by complicated calculations. By doing the usual calculations of string theory
A remarkable result at the intersection of number theory and group theory states that the order of a finite group $G$ (denoted $|G|$) is divisible by the dimension $d_R$ of any irreducible complex representation of $G$. We show that the integer ratio
In random matrix theory, Marchenko-Pastur law states that random matrices with independent and identically distributed entries have a universal asymptotic eigenvalue distribution under large dimension limit, regardless of the choice of entry distribu
The anomaly cancellation equations for the $U(1)$ gauge group can be written as a cubic equation in $n-1$ integer variables, where $n$ is the number of Weyl fermions carrying the $U(1)$ charge. We solve this Diophantine cubic equation by providing a