ترغب بنشر مسار تعليمي؟ اضغط هنا

Lepton Number Violation in Low Scale Seesaw Mechanism and its Collider Complementarity

55   0   0.0 ( 0 )
 نشر من قبل Sudhanwa Patra Dr.
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the TeV scale left-right symmetric theory which can accommodate low scale seesaw mechanisms consistent with neutrino oscillation data and find new physics contributions to neutrinoless double beta decay. The model facilitates natural type-II seesaw dominance and the presence of extra particles make the Dirac neutrino mass matrix $M_D$ large that leads to large light heavy neutrino mixing. The spontaneous symmetry breaking through doublets, triplets and bidoublet scalars at TeV scale offers rich phenomenology accessible to LHC. From the numerical studies of the new physics contributions to neutrinoless double beta decay we derive a lower limit on absolute scale of lightest neutrino mass and find that normal hierarchy (NH) pattern is favorable taking into account the cosmology and oscillation data.



قيم البحث

اقرأ أيضاً

Neutrino are massless in the Standard Model. The most popular mechanism to generate neutrino masses are the type I and type II seesaw, where right-handed neutrinos and a scalar triplet are augmented to the Standard Model, respectively. In this work, we discuss a model where a type I + II seesaw mechanism naturally arises via spontaneous symmetry breaking of an enlarged gauge group. Lepton flavor violation is a common feature in such setup and for this reason, we compute the model contribution to the $mu rightarrow egamma$ and $mu rightarrow 3e$ decays. Moreover, we explore the connection between the neutrino mass ordering and lepton flavor violation in perspective with the LHC, HL-LHC and HE-LHC sensitivities to the doubly charged scalar stemming from the Higgs triplet. Our results explicitly show the importance of searching for signs of lepton flavor violation in collider and muon decays. The conclusion about which probe yields stronger bounds depends strongly on the mass ordering adopted, the absolute neutrino masses and which much decay one considers. In the 1-5 TeV mass region of the doubly charged scalar, lepton flavor violation experiments and colliders offer orthogonal and complementary probes. Thus if a signal is observed in one of the two new physics searches, the other will be able to assess whether it stems from a seesaw framework.
126 - W. Grimus , L. Lavoura 2013
We present a general framework for models in which the lepton mixing matrix is the product of the maximal mixing matrix U_omega times a matrix constrained by a well-defined Z_2 symmetry. Our framework relies on neither supersymmetry nor non-renormali zable Lagrangians nor higher dimensions; it relies instead on the double seesaw mechanism and on the soft breaking of symmetries. The framework may be used to construct models for virtually all the lepton mixing matrices of the type mentioned above which have been proposed in the literature.
We consider a version of the low-scale type I seesaw mechanism for generating small neutrino masses, as an alternative to the standard seesaw scenario. It involves two right-handed (RH) neutrinos $ u_{1R}$ and $ u_{2R}$ having a Majorana mass term wi th mass $M$, which conserves the lepton charge $L$. The RH neutrino $ u_{2R}$ has lepton-charge conserving Yukawa couplings $g_{ell 2}$ to the lepton and Higgs doublet fields, while small lepton-charge breaking effects are assumed to induce tiny lepton-charge violating Yukawa couplings $g_{ell 1}$ for $ u_{1R}$, $l=e,mu,tau$. In this approach the smallness of neutrino masses is related to the smallness of the Yukawa coupling of $ u_{1R}$ and not to the large value of $M$: the RH neutrinos can have masses in the few GeV to a few TeV range. The Yukawa couplings $|g_{ell 2}|$ can be much larger than $|g_{ell 1}|$, of the order $|g_{ell 2}| sim 10^{-4} - 10^{-2}$, leading to interesting low-energy phenomenology. We consider a specific realisation of this scenario within the Froggatt-Nielsen approach to fermion masses. In this model the Dirac CP violation phase $delta$ is predicted to have approximately one of the values $delta simeq pi/4,, 3pi/4$, or $5pi/4,, 7pi/4$, or to lie in a narrow interval around one of these values. The low-energy phenomenology of the considered low-scale seesaw scenario of neutrino mass generation is also briefly discussed.
284 - Guan-nan Li , Gang Guo , Bo Ren 2012
We study phenomenological implications of a radiative inverse seesaw dark matter model. In this model, because neutrino masses are generated at two loop level with inverse seesaw, the new physics mass scale can be as low as a few hundred GeV and the model also naturally contain dark matter candidate. The Yukawa couplings linking the SM leptons and new particles can be large. This can lead to large lepton flavor violating effects. We find that future experimental data on $mu to e gamma$ and $mu - e$ conversion can further test the model. The new charged particles can affect significantly the $h to gamma gamma$ branching ratio in the SM. The model is able to explain the deviation between the SM prediction and the LHC data. We also study some LHC signatures of the new particles in the model.
141 - Tony Gherghetta 2003
It is shown how pure Dirac neutrino masses can naturally occur at low energies even in the presence of Planck scale lepton number violation. The geometrical picture in five dimensions assumes that the lepton number symmetry is explicitly broken on th e Planck brane while the right-handed neutrino is localised on the TeV brane. This physical separation in the bulk causes the global lepton number to be preserved at low energies. A small wavefunction overlap between the left-handed and right-handed neutrinos then naturally leads to a small Dirac Yukawa coupling. By the AdS/CFT correspondence there exists a purely four-dimensional dual description in which the right-handed neutrino is a composite CFT bound state. The global lepton number is violated at the Planck scale in a fundamental sector whose mixing into the composite sector is highly suppressed by CFT operators with large anomalous dimensions. A similar small mixing is then also responsible for generating a naturally small Dirac Yukawa coupling between the fundamental left-handed neutrino and the composite right-handed neutrino.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا