ﻻ يوجد ملخص باللغة العربية
We present a general framework for models in which the lepton mixing matrix is the product of the maximal mixing matrix U_omega times a matrix constrained by a well-defined Z_2 symmetry. Our framework relies on neither supersymmetry nor non-renormalizable Lagrangians nor higher dimensions; it relies instead on the double seesaw mechanism and on the soft breaking of symmetries. The framework may be used to construct models for virtually all the lepton mixing matrices of the type mentioned above which have been proposed in the literature.
From the standard seesaw mechanism of neutrino mass generation, which is based on the assumption that the lepton number is violated at a large (~10exp(+15) GeV) scale, follows that the neutrinoless double-beta decay is ruled by the Majorana neutrino
In this paper, we investigate the double covering of modular $Gamma^{}_5 simeq A^{}_5$ group and derive all the modular forms of weight one for the first time. The modular forms of higher weights are also explicitly given by decomposing the direct pr
We consider the TeV scale left-right symmetric theory which can accommodate low scale seesaw mechanisms consistent with neutrino oscillation data and find new physics contributions to neutrinoless double beta decay. The model facilitates natural type
The see-saw mechanism to generate small neutrino masses is reviewed. After summarizing our current knowledge about the low energy neutrino mass matrix we consider reconstructing the see-saw mechanism. Low energy neutrino physics is not sufficient to
We construct a neutrino mass model based on the flavour symmetry group $A_4times C_4 times C_6 times C_2$ which accommodates a light sterile neutrino in the minimal extended seesaw (MES) scheme. Besides the flavour symmetry, we introduce a $U(1)$ gau