ترغب بنشر مسار تعليمي؟ اضغط هنا

Defects in Nematic Shells: a $Gamma$-convergence discrete-to-continuum approach

170   0   0.0 ( 0 )
 نشر من قبل Antonio Segatti
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we rigorously investigate the emergence of defects on Nematic Shells with genus different from one. This phenomenon is related to a non trivial interplay between the topology of the shell and the alignment of the director field. To this end, we consider a discrete $XY$ system on the shell $M$, described by a tangent vector field with unit norm sitting at the vertices of a triangulation of the shell. Defects emerge when we let the mesh size of the triangulation go to zero, namely in the discrete-to-continuum limit. In this paper we investigate the discrete-to-continuum limit in terms of $Gamma$-convergence in two different asymptotic regimes. The first scaling promotes the appearance of a finite number of defects whose charges are in accordance with the topology of shell $M$, via the Poincare-Hopf Theorem. The second scaling produces the so called Renormalized Energy that governs the equilibrium of the configurations with defects.

قيم البحث

اقرأ أيضاً

We consider a system of charged particles moving on the real line driven by electrostatic interactions. Since we consider charges of both signs, collisions might occur in finite time. Upon collision, some of the colliding particles are effectively re moved from the system (annihilation). The two applications we have in mind are vortices and dislocations in metals. In this paper we reach two goals. First, we develop a rigorous solution concept for the interacting particle system with annihilation. The main innovation here is to provide a careful management of the annihilation of groups of more than two particles, and we show that the definition is consistent by proving existence, uniqueness, and continuous dependence on initial data. The proof relies on a detailed analysis of ODE trajectories close to collision, and a reparametrization of vectors in terms of the moments of their elements. Secondly, we pass to the many-particle limit (discrete-to-continuum), and recover the expected limiting equation for the particle density. Due to the singular interactions and the annihilation rule, standard proof techniques of discrete-to-continuum limits do not apply. In particular, the framework of measures seems unfit. Instead, we use the one-dimensional feature that both the particle system and the limiting PDE can be characterized in terms of Hamilton--Jacobi equations. While our proof follows a standard limit procedure for such equations, the novelty with respect to existing results lies in allowing for stronger singularities in the particle system by exploiting the freedom of choice in the definition of viscosity solutions.
We study planar nematic equilibria on a two-dimensional annulus with strong and weak tangent anchoring, within the Oseen-Frank and Landau-de Gennes theories for nematic liquid crystals. We analyse the defect-free state in the Oseen-Frank framework an d obtain analytic stability criteria in terms of the elastic anisotropy, annular aspect ratio and anchoring strength. We consider radial and azimuthal perturbations of the defect-free state separately, which yields a complete stability diagram for the defect-free state. We construct nematic equilibria with an arbitrary number of defects on a two-dimensional annulus with strong tangent anchoring and compute their energies; these equilibria are generalizations of the diagonal and rotated states observed in a square. This gives novel insights into the correlation between preferred numbers of defects, their locations and the geometry. In the Landau-de Gennes framework, we adapt Mironescus powerful stability result in the Ginzburg-Landau framework (P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, 1995) to compute quantitative criteria for the local stability of the defect-free state in terms of the temperature and geometry.
We study the asymptotic behaviour of a gradient system in a regime in which the driving energy becomes singular. For this system gradient-system convergence concepts are ineffective. We characterize the limiting behaviour in a different way, by provi ng $Gamma$-convergence of the so-called energy-dissipation functional, which combines the gradient-system components of energy and dissipation in a single functional. The $Gamma$-limit of these functionals again characterizes a variational evolution, but this limit functional is not the energy-dissipation functional of any gradient system. The system in question describes the diffusion of a particle in a one-dimensional double-well energy landscape, in the limit of small noise. The wells have different depth, and in the small-noise limit the process converges to a Markov process on a two-state system, in which jumps only happen from the higher to the lower well. This transmutation of a gradient system into a variational evolution of non-gradient type is a model for how many one-directional chemical reactions emerge as limit of reversible ones. The $Gamma$-convergence proved in this paper both identifies the `fate of the gradient system for these reactions and the variational structure of the limiting irreversible reactions.
We analyze the continuum limit of a thresholding algorithm for motion by mean curvature of one dimensional interfaces in various space-time discrete regimes. The algorithm can be viewed as a time-splitting scheme for the Allen-Cahn equation which is a typical model for the motion of materials phase boundaries. Our results extend the existing statements which are applicable mostly in semi-discrete (continuous in space and discrete in time) settings. The motivations of this work are twofolds: to investigate the interaction between multiple small parameters in nonlinear singularly perturbed problems, and to understand the anisotropy in curvature for interfaces in spatially discrete environments. In the current work, the small parameters are the the spatial and temporal discretization step sizes $triangle x = h$ and $triangle t = tau$. We have identified the limiting description of the interfacial velocity in the (i) sub-critical ($h ll tau$), (ii) critical ($h = O(tau)$), and (iii) super-critical ($h gg tau$) regimes. The first case gives the classical isotropic motion by mean curvature, while the second produces intricate pinning and de-pinning phenomena and anisotropy in the velocity function of the interface. The last case produces no motion (complete pinning).
When the temperature of a trapped Bose gas is below the Bose-Einstein transition temperature and above absolute zero, the gas is composed of two distinct components: the Bose-Einstein condensate and the cloud of thermal excitations. The dynamics of t he excitations can be described by quantum Boltzmann models. We establish a connection between quantum Boltzmann models and chemical reaction networks. We prove that the discrete differential equations for these quantum Boltzmann models converge to an equilibrium point. Moreover, this point is unique for all initial conditions that satisfy the same conservation laws. In the proof, we then employ a toric dynamical system approach, similar to the one used to prove the global attractor conjecture, to study the convergence to equilibrium of quantum kinetic equations, derived in [49,50].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا