ﻻ يوجد ملخص باللغة العربية
The massless fermions of a Weyl semimetal come in two species of opposite chirality, in two cones of the band structure. As a consequence, the current $j$ induced in one Weyl cone by a magnetic field $B$ (the chiral magnetic effect, CME) is cancelled in equilibrium by an opposite current in the other cone. Here we show that superconductivity offers a way to avoid this cancellation, by means of a flux bias that gaps out a Weyl cone jointly with its particle-hole conjugate. The remaining gapless Weyl cone and its particle-hole conjugate represent a single fermionic species, with renormalized charge $e^ast$ and a single chirality $pm$ set by the sign of the flux bias. As a consequence, the CME is no longer cancelled in equilibrium but appears as a supercurrent response $partial j/partial B=pm(e^ast e/h^2)mu$ along the magnetic field at chemical potential $mu$.
Recently, much research has been dedicated to understanding topological superconductivity and Majorana zero modes induced by a magnetic field in hybrid proximity structures. This paper proposes a realization of topological superconductivity in a shor
It was shown recently that Weyl fermions in a superconducting vortex lattice can condense into Landau levels. Here we study the chiral magnetic effect in the lowest Landau level: The appearance of an equilibrium current $I$ along the lines of magneti
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons f
We study the dynamic chiral magnetic conductivity (DCMC) and natural optical activity in an inversion-broken tilted Weyl semimetal (WSM). Starting from the Kubo formula, we derive the analytical expressions for the DCMC for two different directions o
We show that the surface of an $s$-wave superconductor decorated with a two-dimensional lattice of magnetic impurities can exhibit chiral topological superconductivity. If impurities order ferromagnetically and the superconducting surface supports a