ﻻ يوجد ملخص باللغة العربية
We show that the surface of an $s$-wave superconductor decorated with a two-dimensional lattice of magnetic impurities can exhibit chiral topological superconductivity. If impurities order ferromagnetically and the superconducting surface supports a sufficiently strong Rashba-type spin-orbit coupling, Shiba sub-gap states at impurity locations can hybridize into Bogoliubov bands with non-vanishing, sometimes large, Chern number $C$. This topological superconductor supports $C$ chiral Majorana edge modes. We construct phase diagrams for model two-dimensional superconductors, accessing the dilute and dense magnetic impurity limits analytically and the intermediate regime numerically. To address potential experimental systems, we identify stable configurations of ferromagnetic iron atoms on the Pb (111) surface and conclude that ferromagnetic adatoms on Pb surfaces can provide a versatile platform for two-dimensional topological superconductivity.
Majorana zero modes have been proposed as building blocks for fault-tolerant quantum information processing. They can be realized in semiconductors with strong spin-orbit interaction coupled to a superconductor. Experimental advances in the field of
We propose a platform to realize nodal topological superconductors in a superconducting monolayer of MoX$_2$ (X$=$S, Se, Te) using an in-plane magnetic field. The bulk nodal points appear where the spin splitting due to spin-orbit coupling vanishes n
Josephson weak links made of two-dimensional topological insulators (TIs) exhibit magnetic oscillations of the supercurrent that are reminiscent of those in superconducting quantum interference devices (SQUIDs). We propose a microscopic theory of thi
As part of the intense effort towards identifying platforms in which Majorana bound states can be realized and manipulated to perform qubit operations, we propose a topological Josephson junction architecture that achieves these capabilities and whic
Progress in the emergent field of topological superconductivity relies on synthesis of new material combinations, combining superconductivity, low density, and spin-orbit coupling (SOC). For example, theory [1-4] indicates that the interface between