ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-wavelength observations of the Be/X-ray binary IGR J01217-7257 (=SXP 2.16) during outburst

121   0   0.0 ( 0 )
 نشر من قبل Christopher Boon
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present simultaneous, multi-wavelength observations of the Small Magellanic Cloud Be/XRB IGR J01217-7257 (=SXP 2.16) during outbursts in 2014, 2015 and 2016. We also present the results of RXTE observations of the Small Magellanic Cloud during which the source was initially discovered with a periodicity of 2.1652$pm$0.0001 seconds which we associate with the spin period of the neutron star. A systematic temporal analysis of long term Swift/BAT data reveals a periodic signal of 82.5$pm$0.7 days, in contrast with a similar analysis of long base line OGLE I-band light curves which reveals an 83.67$pm$0.05 days also found in this work. Interpreting the longer X-ray periodicity as indicative of binary motion of the neutron star, we find that outbursts detected by INTEGRAL and Swift between 2014 and 2016 are consistent with Type I outbursts seen in Be/XRBs, occurring around periastron. Comparing these outbursts with the OGLE data, we see a clear correlation between outburst occurrence and increasing I-band flux. A periodic analysis of subdivisions of OGLE data reveals three epochs during which short periodicities of $sim$1 day are significantly detected which we suggest are non-radial pulsations (NRPs) of the companion star. These seasons immediately precede those exhibiting clear outburst behaviour, supporting the suggested association between the NRPs, decretion disk growth and the onset of Type I outbursts.

قيم البحث

اقرأ أيضاً

Giant X-ray outbursts, with luminosities of about $ 10^{37}$ erg s$^{-1}$, are observed roughly every 5 years from the nearby Be/pulsar binary 1A 0535+262. In this article, we present observations of the source with VERITAS at very-high energies (VHE ; E$>$100 GeV) triggered by the X-ray outburst in December 2009. The observations started shortly after the onset of the outburst, and they provided comprehensive coverage of the episode, as well as the 111-day binary orbit. No VHE emission is evident at any time. We also examined data from the contemporaneous observations of 1A 0535+262 with the Fermi/LAT at high energy photons (HE; E$>$0.1 GeV) and failed to detect the source at GeV energies. The X-ray continua measured with the Swift/XRT and the RXTE/PCA can be well described by the combination of blackbody and Comptonized emission from thermal electrons. Therefore, the gamma-ray and X-ray observations suggest the absence of a significant population of non-thermal particles in the system. This distinguishes 1A~0535+262 from those Be X-ray binaries (such as PSR B1259--63 and LS I +61$^{circ}$303) that have been detected at GeV--TeV energies. We discuss the implications of the results on theoretical models.
Be X-ray binaries are among the best known transient high-energy sources. Their outbursts are commonly classified into a simple scheme of normal and giant outbursts, but a closer look shows that actual outbursts do not always follow this simple schem e. Recent data show a variety of properties, like pre-flares, shifts of the outburst peaks with respect to the periastron, multi-peaked outbursts etc. We present results from a systematic study of a large number of outbursts monitored by various space missions, comparing outburst properties and their relation to system parameters and current theoretical understanding.
In this paper we report on a long multi-wavelength observational campaign of the supergiant fast X-ray transient prototype IGR J17544-2619. A 150 ks-long observation was carried out simultaneously with XMM-Newton and NuSTAR, catching the source in an initial faint X-ray state and then undergoing a bright X-ray outburst lasting about 7 ks. We studied the spectral variability during outburst and quiescence by using a thermal and bulk Comptonization model that is typically adopted to describe the X-ray spectral energy distribution of young pulsars in high mass X-ray binaries. Although the statistics of the collected X-ray data were relatively high we could neither confirm the presence of a cyclotron line in the broad-band spectrum of the source (0.5-40 keV), nor detect any of the previously reported tentative detection of the source spin period. The monitoring carried out with Swift/XRT during the same orbit of the system observed by XMM-Newton and NuSTAR revealed that the source remained in a low emission state for most of the time, in agreement with the known property of all supergiant fast X-ray transients being significantly sub-luminous compared to other supergiant X-ray binaries. Optical and infrared observations were carried out for a total of a few thousands of seconds during the quiescence state of the source detected by XMM-Newton and NuSTAR. The measured optical and infrared magnitudes were slightly lower than previous values reported in the literature, but compatible with the known micro-variability of supergiant stars. UV observations obtained with the UVOT telescope on-board Swift did not reveal significant changes in the magnitude of the source in this energy domain compared to previously reported values.
We present a type-I outburst of the high-mass X-ray binary EXO 2030+375, detected during INTEGRALs Performance and Verification Phase in December 2002 (on-source time about 10e+06 seconds). In addition, six more outbursts have been observed during IN TEGRALs Galactic Plane Scans. X-ray pulsations have been detected with a pulse period of 41.691798+-0.000016 s. The X-ray luminosity in the 5-300 keV energy range was 9.7*10e+36 erg/s, for a distance of 7.1 kpc. Two unusual features were found in the light curve, with an initial peak before the main outburst and another possible spike after the maximum. RXTE observations confirm only the existence of the initial spike. Although the initial peak appears to be a recurrent feature, the physical mechanisms producing it and the possible second spike are unknown. Moreover, a four-day delay between periastron passage and the peak of the outburst is observed. We present for the first time a 5-300 keV broad-band spectrum of this source. It can be modelled by the sum of a disk black body (kT_bb~8 keV) with either a power law model with Gamma=2.04+-0.11 keV or a Comptonized component (spherical geometry, kT_e=30 keV, tau=2.64, kT_W=1.5 keV).
We present and analyze the optical photometric and spectroscopic data of the Be/X-ray binary MXB 0656-072 from 2006 to 2009. A 101.2-day orbital period is found, for the first time, from the present public X-ray data(Swift/BAT and RXTE/ASM). The anti -correlation between the H$alpha$ emission and the $UBV$ brightness of MXB 0656$-$072 during our 2007 observations indicates that a mass ejection event took place in the system. After the mass ejection, a low-density region might develop around the Oe star. With the outward motion of the circumstellar disk, the outer part of the disk interacted with the neutron star around its periastron passage and a series of the X-ray outbursts were triggered between MJD 54350 and MJD 54850. The PCA--HEXTE spectra during the 2007-2008 X-ray outbursts could be well fitted by a cut-off power law with low energy absorption, together with an iron line around 6.4 keV, and a broad cyclotron resonance feature around 30 keV. The same variability of the soft and hard X-ray colors in 2.3-21 keV indicated that there were no overall changes in the spectral shape during the X-ray outbursts, which might be only connected with the changes of the mass-accretion rate onto the neutron star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا