ترغب بنشر مسار تعليمي؟ اضغط هنا

Evidence from stable isotopes and Be-10 for solar system formation triggered by a low-mass supernova

93   0   0.0 ( 0 )
 نشر من قبل Yong-Zhong Qian
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

About 4.6 billion years ago, some event disturbed a cloud of gas and dust, triggering the gravitational collapse that led to the formation of the solar system. A core-collapse supernova, whose shock wave is capable of compressing such a cloud, is an obvious candidate for the initiating event. This hypothesis can be tested because supernovae also produce telltale patterns of short-lived radionuclides, which would be preserved today as isotopic anomalies. Previous studies of the forensic evidence have been inconclusive, finding a pattern of isotopes differing from that produced in conventional supernova models. Here we argue that these difficulties either do not arise or are mitigated if the initiating supernova was a special type, low in mass and explosion energy. Key to our conclusion is the demonstration that short-lived Be-10 can be readily synthesized in such supernovae by neutrino interactions, while anomalies in stable isotopes are suppressed.

قيم البحث

اقرأ أيضاً

We investigate the enrichment of the pre-solar cloud core with short lived radionuclides (SLRs), especially 26Al. The homogeneity and the surprisingly small spread in the ratio 26Al/27Al observed in the overwhelming majority of calcium-aluminium-rich inclusions (CAIs) in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the the solar system. Freshly synthesized radioactive 26Al has to be included and well mixed within 20kyr. After discussing various scenarios including X-winds, AGB stars and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20kyr. We show that a cold clump of 10Msun at a distance of 5pc can be sufficiently enriched in 26Al and triggered into collapse fast enough - within 18kyr after encountering the supernova shock - for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire supernova bubble. In summary, we envision an environment for the birth place of the Solar System 4.567Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an HII region will be hit by a supernova explosion in the future. We show that the triggered collapse and formation of the Solar System as well as the required enrichment with radioactive 26Al are possible in this scenario.
We study the formation of low-mass and extremely metal-poor stars in the early universe. Our study is motivated by the recent discovery of a low-mass (M < 0.8 Msun) and extremely metal-poor (Z <= 4.5 x 10^{-5} Zsun) star in the Galactic halo by Caffa u et al. We propose a model that early supernova (SN) explosions trigger the formation of low-mass stars via shell fragmentation. We first perform one-dimensional hydrodynamic simulations of the evolution of an early SN remnant. We show that the shocked shell undergoes efficient radiative cooling and then becomes gravitationally unstable to fragment and collapse in about ten million years. We then follow the thermal evolution of the collapsing fragments using a one-zone code. Our one-zone calculation treats chemistry and radiative cooling self-consistently in low-metallicity gas. The collapsing gas cloud evolves roughly isothermally, until it cools rapidly by dust continuum emission at the density 10^{13}-10^{14} /cc. The cloud core then becomes thermally and gravitationally unstable and fragments. We argue that early SNe can trigger the formation of low-mass stars in the extremely metal-poor environment as Caffau et al. discovered recently.
The SEDA-FIB is a detector designed to measure solar neutrons. This solar neutron detector was operated onboard the ISS on July 16, 2009 and March 31, 2018. Eighteen large solar flares were later observed by the GOES satellite in solar active region 12673 that appeared on September 4 and lasted until September 10, 2017, with intensity higher than > M2. In nine of those solar flares, the SEDA-FIB detected clear signals of solar neutrons, along with five minor excesses. Among these events, we focus on two associated with the flares of X2.2 (SOL2017-09-06) and X8.2 (SOL2017-09-10) that share a common feature: a process of accelerating electrons into high energies as clearly recorded by the FERMI-GBM detector. These events may provide us with useful information to elucidate the ion acceleration process. The X8.2 event was a limb flare that proved adequate for fixing the parameters needed to explain the process of particle acceleration into high energies. According to our analysis, the electron acceleration process may possibly be explained by the shock acceleration model. However, we found that it would be difficult to explain the simultaneous acceleration of ions with electrons, unless the ions were preheated prior to their rapid acceleration.
81 - Tobias Melson 2015
We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino tr ansport. The progenitor is a nonrotating, zero-metallicity 9.6 Msun star with an iron core. While in spherical symmetry outward shock acceleration sets in later than 300 ms after bounce, a successful explosion starts at ~130 ms postbounce in two dimensions (2D). The 3D model explodes at about the same time but with faster shock expansion than in 2D and a more quickly increasing and roughly 10 percent higher explosion energy of >10^50 erg. The more favorable explosion conditions in 3D are explained by lower temperatures and thus reduced neutrino emission in the cooling layer below the gain radius. This moves the gain radius inward and leads to a bigger mass in the gain layer, whose larger recombination energy boosts the explosion energy in 3D. These differences are caused by less coherent, less massive, and less rapid convective downdrafts associated with postshock convection in 3D. The less violent impact of these accretion downflows in the cooling layer produces less shock heating and therefore diminishes energy losses by neutrino emission. We thus have, for the first time, identified a reduced mass accretion rate, lower infall velocities, and a smaller surface filling factor of convective downdrafts as consequences of 3D postshock turbulence that facilitate neutrino-driven explosions and strengthen them compared to the 2D case.
We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude o f $V = -4.63^{+0.3}_{-0.4}$ mag and a colour of $V-I = 2.29^{+0.25}_{-0.39}$ mag, corresponding to a progenitor luminosity of log $L$/L$_{odot}$ $sim4.54pm0.19$ dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with $M = 8.5_{-1.5}^{+6.5}$ M$_{odot}$. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of $^{56}$Ni ejected in the explosion to be $(5.4pm1.3) times 10^{-3}$ M$_{odot}$ from the luminosity on the radioactive tail, which is in agreement with the low $^{56}$Ni masses estimated for other sub-luminous Type IIP SNe. From the lightcurve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log $L$/L$_{odot}$ $sim4.3-5$ dex) and model luminosities after the second-dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core-collapse. This is now the third discovery of a low mass progenitor star producing a low energy explosion and low $^{56}$Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse supernova (7-8 M$_{odot}$).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا