ترغب بنشر مسار تعليمي؟ اضغط هنا

Effect of Mg-Al insertion on magnetotransport properties in epitaxial Fe/sputter-deposited $MgAl_{2}O_{4}$/Fe(001) magnetic tunnel junctions

69   0   0.0 ( 0 )
 نشر من قبل Mohamed Belmoubarik
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the effect of a Mg-Al layer insertion at the bottom interface of epitaxial Fe/$MgAl_{2}O_{4}$/Fe(001) magnetic tunnel junctions (MTJs) on their spin-dependent transport properties. The tunnel magnetoresistance (TMR) ratio and differential conductance spectra for the parallel magnetic configuration exhibited clear dependence on the inserted Mg-Al thickness. A slight Mg-Al insertion (thickness < 0.1 nm) was effective for obtaining a large TMR ratio above 200% at room temperature and observing a distinct local minimum structure in conductance spectra. In contrast, thicker Mg-Al (> 0.2 nm) induced a reduction of TMR ratios and featureless conductance spectra, indicating a degradation of the bottom-Fe/$MgAl_{2}O_{4}$ interface. Therefore, a minimal Mg-Al insertion was found to be effective to maximize the TMR ratio for a sputtered $MgAl_{2}O_{4}$-based MTJ.



قيم البحث

اقرأ أيضاً

Giant tunnel magnetoresistance (TMR) ratios of 417% at room temperature (RT) and 914% at 3 K were demonstrated in epitaxial Fe/MgO/Fe(001) exchanged-biased spin-valve magnetic tunnel junctions (MTJs) by tuning growth conditions for each layer, combin ing sputter deposition for the Fe layers, electron-beam evaporation of the MgO barrier, and barrier interface tuning. Clear TMR oscillation as a function of the MgO thickness with a large peak-to-valley difference of ~80% was observed when the layers were grown on a highly (001)-oriented Cr buffer layer. Specific features of the observed MTJs are symmetric differential conductance (dI/dV) spectra for the bias polarity and plateau-like deep local minima in dI/dV (parallel configuration) at |V| = 0.2~0.5 V. At 3K, fine structures with two dips emerge in the plateau-like dI/dV, reflecting highly coherent tunneling through the Fe/MgO/Fe. We also observed a 496% TMR ratio at RT by a 2.24-nm-thick-CoFe insertion at the bottom-Fe/MgO interface.
We investigated structural, magnetic and electrical properties of sputter deposited Mn-Fe-Ga compounds. The crystallinity of the Mn-Fe-Ga thin films was confirmed using x-ray diffraction. X-ray reflection and atomic force microscopy measurements were utilized to investigate the surface properties, roughness, thickness and density of the deposited Mn-Fe-Ga. Depending on the stoichiometry, as well as the used substrates (SrTiO3 (001) and MgO (001)) or buffer layer (TiN) the Mn-Fe-Ga crystallizes in the cubic or the tetragonally distorted phase. Anomalous Hall effect and alternating gradient magnetometry measurements confirmed strong perpendicular magnetocrystalline anisotropy. Low saturation magnetization and hard magnetic behavior was reached by tuning the composition. Temperature dependent anomalous Hall effect measurements in a closed cycle He-cryostat showed a slight increase in coercivity with decreasing temperature (300K to 2K). TiN buffered Mn2.7Fe0.3Ga revealed sharper switching of the magnetization compared to the unbuffered layers.
301 - Xiaobing Feng 2008
The interface structure of Fe/MgO(100) magnetic tunnel junctions predicted by density functional theory (DFT) depends significantly on the choice of exchange and correlation functional. Bader analysis reveals that structures obtained by relaxing the cell with the local spin-density approximation (LSDA) display a different charge transfer than those relaxed with the generalized gradient approximation (GGA). As a consequence, the electronic transport is found to be extremely sensitive to the interface structure. In particular, the conductance for the LSDA-relaxed geometry is about one order of magnitude smaller than that of the GGA-relaxed one. The high sensitivity of the electronic current to the details of the interface might explain the discrepancy between the experimental and calculated values of magnetoresistance.
Alloying Fe electrodes with V, through reduced FeV/MgO interface mismatch in epitaxial magnetic tunnel junctions with MgO barriers, notably suppresses both nonmagnetic (parallel) and magnetic (antiparallel) state 1/f noise and enhances tunnelling mag netoresistance (TMR). A comparative study of the room temperature electron transport and low frequency noise in Fe1-xVx/MgO/Fe and Fe/MgO/Fe1-xVx MTJs with 0 <= x <= 0.25 reveals that V doping of the bottom electrode for x < 0.1 reduces in nearly 2 orders of magnitude the normalized nonmagnetic and magnetic 1/f noise. We attribute the enhanced TMR and suppressed 1/f noise to strongly reduced misfit and dislocation density.
We investigated perpendicular magnetic anisotropy (PMA) and related properties of epitaxial Fe (0.7 nm)/MgAl2O4(001) heterostructures prepared by electron-beam evaporation. Using an optimized structure, we obtained a large PMA energy ~1 MJ/m3 at room temperature, comparable to that in ultrathin-Fe/MgO(001) heterostructures. Both the PMA energy and saturation magnetization show weak temperature dependence, ensuring wide working temperature in application. The effective magnetic damping constant of the 0.7 nm Fe layer was ~0.02 using time-resolved magneto-optical Kerr effect. This study demonstrates capability of the Fe/MgAl2O4 heterostructure for perpendicular magnetic tunnel junctions, as well as a good agreement with theoretical predictions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا