ﻻ يوجد ملخص باللغة العربية
Helical and azimuthal magnetorotational instabilities operate in rotating magnetized flows with relatively steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear, which determine the threshold of modal growth of these instabilities, are continuously connected when some axial electrical current is allowed to pass through the rotating fluid. We investigate the nonmodal dynamics of these instabilities arising from the non-normality of shear flow in the local approximation, generalizing the results of the modal approach. It is demonstrated that moderate transient/nonmodal amplification of both types of magnetorotational instability occurs within the Liu limits, where the system is stable according to modal analysis. We show that for the helical magnetorotational instability this magnetohydrodynamic behavior is closely connected with the nonmodal growth of the underlying purely hydrodynamic problem.
The helical magnetorotational instability is known to work for resistive rotational flows with comparably steep negative or extremely steep positive shear. The corresponding lower and upper Liu limits of the shear are continuously connected when some
We study the convective and absolute forms of azimuthal magnetorotational instability (AMRI) in a Taylor-Couette (TC) flow with an imposed azimuthal magnetic field. We show that the domain of the convective AMRI is wider than that of the absolute AMR
The magnetorotational instability (MRI) is the most promising mechanism by which angular momentum is efficiently transported outwards in astrophysical discs. However, its application to protoplanetary discs remains problematic. These discs are so poo
The Kelvin-Helmholtz (KH) instability of a shear layer with an initially-uniform magnetic field in the direction of flow is studied in the framework of 2D incompressible magnetohydrodynamics with finite resistivity and viscosity using direct numerica
We study the spatio-temporal behavior of the Elsasser variables describing magnetic and velocity field fluctuations, using direct numerical simulations of three-dimensional magnetohydrodynamic turbulence. We consider cases with relatively small, inte