ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic state of Nb(1-7nm)/Cu$_{30}$Ni$_{70}$(6nm) superlattices revealed by Polarized Neutron Reflectometry and SQUID magnetometry

75   0   0.0 ( 0 )
 نشر من قبل Yury Khaydukov N.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report results of a magnetic characterization of [Cu$_{30}$Ni$_{70}$(6nm)]$_{20}$ (x=1-7nm) superlattices using Polarized Neutron Reflectometry (PNR) and SQUID magnetometry. The study has shown that the magnetic moment of the structures growths almost linearly from H = 0 to H$_{sat}$ = 1.3kOe which is an indirect evidence of antiferromagnetic (AF) coupling of the magnetic moments in neighbouring layers. PNR, however, did not detect any in-plane AF coupling. Taking into account the out-of-plane easy axis of the Cu$_{30}$Ni$_{70}$ layers, this may mean that only the out-of-plane component of the magnetic moments are AF coupled.


قيم البحث

اقرأ أيضاً

122 - A. Buchter , J. Nagel , D. Ruffer 2013
Using an optimally coupled nanometer-scale superconducting quantum interference device, we measure the magnetic flux originating from an individual ferromagnetic Ni nanotube attached to a Si cantilever. At the same time, we detect the nanotubes volum e magnetization using torque magnetometry. We observe both the predicted reversible and irreversible reversal processes. A detailed comparison with micromagnetic simulations suggests that vortex-like states are formed in different segments of the individual nanotube. Such stray-field free states are interesting for memory applications and non-invasive sensing.
278 - W.-T. Lee 2002
Polarized neutron reflectometry (PNR) has long been applied to measure the magnetic depth profile of thin films. In recent years, interest has increased in observing lateral magnetic structures in a film. While magnetic arrays patterned by lithograph y and submicron-sized magnetic domains in thin films often give rise to off-specular reflections, micron-sized ferromagnetic domains on a thin film produce few off-specular reflections and the domain distribution information is contained within the specular reflection. In this paper, we will first present some preliminary results of off-specular reflectivity from arrays of micron-sized permalloy rectangular bars. We will then use specular reflections to study the domain dispersion of an exchange-biased Co/CoO bilayer at different locations of the hysteresis loop.
We have used spin-polarized neutron reflectometry to investigate the magnetization profile of superlattices composed of ferromagnetic Gd and superconducting Nb layers. We have observed a partial suppression of ferromagnetic (F) order of Gd layers in [Gd($d_F$)/Nb(25nm)]$_{12}$ superlattices below the superconducting (S) transition of the Nb layers. The amplitude of the suppression decreases with increasing $d_F$. By analyzing the neutron spin asymmetry we conclude that the observed effect has an electromagnetic origin - the proximity-coupled S layers screen out the external magnetic field and thus suppress the F response of the Gd layers inside the structure. Our investigation demonstrates the considerable influence of electromagnetic effects on the magnetic properties of S/F systems.
132 - V. Zdravkov 2006
We report on the first observation of a pronounced re-entrant superconductivity phenomenon in superconductor/ferromagnetic layered systems. The results were obtained using a superconductor/ferromagnetic-alloy bilayer of Nb/Cu(1-x)Ni(x). The supercond ucting transition temperature T_{c} drops sharply with increasing thickness d_{CuNi} of the ferromagnetic layer, until complete suppression of superconductivity is observed at d_{CuNi}= 4 nm. Increasing the Cu(1-x)Ni(x) layer thickness further, superconductivity reappears at d_{CuNi}=13 nm. Our experiments give evidence for the pairing function oscillations associated with a realization of the quasi-one dimensional Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) like state in the ferromagnetic layer.
Structural, magnetic, and superconducting properties of S/F bilayers Nb/Cu40Ni60 deposited on silicon substrate have been characterized using Polarized Neutron Reflectometry and complementary techniques. The study allowed to determine real thicknesse s of the S and F layers as well as the r.m.s. roughness of the S/F interfaces. The latter does not exceed 1 nm, showing the high quality of the S/F interface. Using SQUID and a mutual inductance setup we determined the superconducting transition temperatures of the samples, which are in agreement with the literature data. Using of PNR for the single S layer allowed to determine the screening length lambda of the superconducting layer, lambda = 120 nm. This value is higher than the London penetration depth for pure niobium which may indicate that the superconductor is in the dirty limit. PNR and SQUID studies of magnetic properties of the CuNi layer have shown the presence of ferromagnetism in all investigated samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا