ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural, magnetic and superconducting characterization of the CuNi/Nb bilayers of the S/F type using Polarized Neutron Reflectometry and complementary techniques

81   0   0.0 ( 0 )
 نشر من قبل Yury Khaydukov N.
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Structural, magnetic, and superconducting properties of S/F bilayers Nb/Cu40Ni60 deposited on silicon substrate have been characterized using Polarized Neutron Reflectometry and complementary techniques. The study allowed to determine real thicknesses of the S and F layers as well as the r.m.s. roughness of the S/F interfaces. The latter does not exceed 1 nm, showing the high quality of the S/F interface. Using SQUID and a mutual inductance setup we determined the superconducting transition temperatures of the samples, which are in agreement with the literature data. Using of PNR for the single S layer allowed to determine the screening length lambda of the superconducting layer, lambda = 120 nm. This value is higher than the London penetration depth for pure niobium which may indicate that the superconductor is in the dirty limit. PNR and SQUID studies of magnetic properties of the CuNi layer have shown the presence of ferromagnetism in all investigated samples.

قيم البحث

اقرأ أيضاً

We report an investigation of the structural and electronic properties of hybrid superconductor/ferromagnet (S/F) bilayers of composition Nb/Cu$_{60}$Ni$_{40}$ prepared by magnetron sputtering. X-ray and neutron reflectometry show that both the overa ll interfacial roughness and vertical correlations of the roughness of different interfaces are lower for heterostructures deposited on Al$_2$O$_3$(1$bar{1}$02) substrates than for those deposited on Si(111). Mutual inductance experiments were then used to study the influence of the interfacial roughness on the superconducting transition temperature, $T_C$. These measurements revealed a $sim$ 4% higher $T_C$ in heterostructures deposited on Al$_2$O$_3$, compared to those on Si. We attribute this effect to a higher mean-free path of electrons in the S layer, caused by a suppression of diffusive scattering at the interfaces. However, the dependence of the $T_C$ on the thickness of the ferromagnetic layer is not significantly different in the two systems, indicating a weak influence of the interfacial roughness on the transparency for Cooper pairs.
The magnetic ground state of polycrystalline Neel skyrmion hosting material GaV$_4$S$_8$ has been investigated using ac susceptibility and powder neutron diffraction. In the absence of an applied magnetic field GaV$_4$S$_8$ undergoes a transition fro m a paramagnetic to a cycloidal state below 13~K and then to a ferromagnetic-like state below 6~K. With evidence from ac susceptibility and powder neutron diffraction, we have identified the commensurate magnetic structure at 1.5 K, with ordered magnetic moments of $0.23(2)~mu_{mathrm{B}}$ on the V1 sites and $0.22(1)~mu_{mathrm{B}}$ on the V2 sites. These moments have ferromagnetic-like alignment but with a 39(8)$^{circ}$ canting of the magnetic moments on the V2 sites away from the V$_4$ cluster. In the incommensurate magnetic phase that exists between 6 and 13 K, we provide a thorough and careful analysis of the cycloidal magnetic structure exhibited by this material using powder neutron diffraction.
Manganese ferrite (MnFe2O4) and copper doped manganese ferrite (Mn0.75Cu0.25Fe2O4) soft materials were synthesized through solid-state sintering method. The phase purity and quality were confirmed from x-ray diffraction patterns. Then the samples wer e subjected to neutron diffraction experiment and the diffraction data were analyzed using FullProf software package. The surface morphology of the soft material samples was studied using a scanning electron microscope (SEM). Crystal parameters, crystallite parameters, occupancy at A and B sites of the spinel structure, magnetic moments of the atoms at various locations, symmetries, oxygen position parameters, bond lengths etc. were measured and compared with the reference data. In MnFe2O4, both octahedral (A) and tetrahedral (B) positions are shared by Mn2+ and Fe2+/3+ cations, here A site is predominantly occupied by Fe2+ and B site is occupied by Mn at 0.825 occupancy. The Cu2+ ions in Cu0.25Mn0.75Fe2O4 mostly occupy the B site. Copper mostly occupy the Octahedral (16d) sites. The length of the cubic lattice decreases with the increasing Copper content. The magnetic properties, i.e. A or B site magnetic moments, net magnetic moment etc. were measured using neutron diffraction analysis and compared with the bulk magnetic properties measured with VSM studies.
Photoinduced non-thermal phase transitions are new paradigms of exotic non-equilibrium physics of strongly correlated materials. An ultrashort optical pulse can drive the system to a new order through complex microscopic interactions that do not occu r in the equilibrium state. Ultrafast spectroscopies are unique tools to reveal the underlying mechanisms of such transitions which lead to transient phases of matter. Yet, their individual specificities often do not provide an exhaustive picture of the physical problem. One effective solution to enhance their performance is the integration of different ultrafast techniques. This provides an opportunity to simultaneously probe physical phenomena from different perspectives whilst maintaining the same experimental conditions. In this context, we performed complementary experiments by combining time-resolved reflectivity and time and angle-resolved photoemission spectroscopy. We demonstrated the advantage of this combined approach by investigating the complex charge density wave (CDW) phase in 1$it{T}$-TiSe$_{2}$. Specifically, we show the key role of lattice degrees of freedom to establish and stabilize the CDW in this material.
We have investigated CuNi/Nb/CuNi trilayers, as have been recently used as the core structure of a spin-valve like device [J. Y. Gu et al., Phys. Rev. Lett. 89, 267001 (2002)] to study the effect of magnetic configurations of the CuNi layers on the c ritical temperature, Tc, of the superconducting Nb. After reproducing a Tc shift of a few mK, we have gone on to explore the performance limits of the structure. The results showed the Tc shift we found to be quite close to the basic limits of this particular materials system. The ratio between the thickness and the coherence length of the superconductor and the interfacial transparency were the main features limiting the Tc shift.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا