ترغب بنشر مسار تعليمي؟ اضغط هنا

What galaxy masses perturb the local cosmic expansion?

45   0   0.0 ( 0 )
 نشر من قبل Jorge Penarrubia
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use 12 cosmological $N$-body simulations of Local Group systems (the Apostle models) to inspect the relation between the virial mass of the main haloes ($M_{rm vir,1}$ and $M_{rm vir,2}$), the mass derived from the relative motion of the halo pair ($M_{rm tim}$), and that inferred from the local Hubble flow ($M_{rm lhf}$). We show that within the Spherical Collapse Model (SCM), the correspondence between the three mass estimates is exact, i.e. $M_{rm lhf}=M_{rm tim}=M_{rm vir,1}+M_{rm vir,2}$. However, comparison with Apostle simulations reveals that, contrary to what the SCM states, a relatively large fraction of the mass that perturbs the local Hubble flow and drives the relative trajectory of the main galaxies is not contained within $R_{rm vir}$, and that the amount of extra-virial mass tends to increase in galaxies with a slow accretion rate. In contrast, modelling the peculiar velocities around the Local Group returns an unbiased constraint on the virial mass ratio of the main galaxy pair. Adopting the outer halo profile found in $N$-body simulations, which scales as $rhosim R^{-4}$ at $Rgtrsim R_{rm vir}$, indicates that the galaxy masses perturbing the local Hubble flow roughly correspond to the asymptotically-convergent (total) masses of the individual haloes. We show that estimates of $M_{rm vir}$ based on the dynamics of tracers at $Rgg R_{rm vir}$ require a priori information on the internal matter distribution and the growth rate of the main galaxies, both of which are typically difficult to quantify.

قيم البحث

اقرأ أيضاً

We present a suite of high-resolution cosmological simulations, using the FIRE-2 feedback physics together with explicit treatment of magnetic fields, anisotropic conduction and viscosity, and cosmic rays (CRs) injected by supernovae (including aniso tropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultra-faint dwarf ($M_{ast}sim 10^{4},M_{odot}$, $M_{rm halo}sim 10^{9},M_{odot}$) through Milky Way masses, systematically vary CR parameters (e.g. the diffusion coefficient $kappa$ and streaming velocity), and study an ensemble of galaxy properties (masses, star formation histories, mass profiles, phase structure, morphologies). We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($gtrsim 1,$pc) scales have small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{ast} ll 10^{10},M_{odot}$, $M_{rm halo} lesssim 10^{11},M_{odot}$), or at high redshifts ($zgtrsim 1-2$), for any physically-reasonable parameters. However at higher masses ($M_{rm halo} gtrsim 10^{11},M_{odot}$) and $zlesssim 1-2$, CRs can suppress star formation by factors $sim 2-4$, given relatively high effective diffusion coefficients $kappa gtrsim 3times10^{29},{rm cm^{2},s^{-1}}$. At lower $kappa$, CRs take too long to escape dense star-forming gas and lose energy to hadronic collisions, producing negligible effects on galaxies and violating empirical constraints from $gamma$-ray emission. But around $kappasim 3times10^{29},{rm cm^{2},s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which supports dense, cool ($Tll 10^{6}$ K) gas that would otherwise rain onto the galaxy. CR heating (from collisional and streaming losses) is never dominant.
In this work we present a nonparametric approach, which works on minimal assumptions, to reconstruct the cosmic expansion of the Universe. We propose to combine a locally weighted scatterplot smoothing method and a simulation-extrapolation method. Th e first one (Loess) is a nonparametric approach that allows to obtain smoothed curves with no prior knowledge of the functional relationship between variables nor of the cosmological quantities. The second one (Simex) takes into account the effect of measurement errors on a variable via a simulation process. For the reconstructions we use as raw data the Union2.1 Type Ia Supernovae compilation, as well as recent Hubble parameter measurements. This work aims to illustrate the approach, which turns out to be a self-sufficient technique in the sense we do not have to choose anything by hand. We examine the details of the method, among them the amount of observational data needed to perform the locally weighted fit which will define the robustness of our reconstruction. In view of our results, we believe that our proposal offers a promising alternative for reconstructing global trends of cosmological data when there is little intuition on the relationship between the variables and we also think it even presents good prospects to generate reliable mock data points where the original sample is poor.
Redshifts of an astronomical body measured at multiple epochs (e.g., separated by 10 years) are different due to the cosmic expansion. This so-called Sandage-Loeb test offers a direct measurement of the expansion rate of the Universe. However, accele ration in the motion of Solar System with respect to the cosmic microwave background also changes redshifts measured at multiple epochs. If not accounted for, it yields a biased cosmological inference. To address this, we calculate the acceleration of Solar System with respect to the Local Group of galaxies to quantify the change in the measured redshift due to local motion. Our study is motivated by the recent determination of the mass of Large Magellanic Cloud (LMC), which indicates a significant fraction of the Milky Way mass. We find that the acceleration towards the Galactic Center dominates, which gives a redshift change of 7 cm/s in 10 years, while the accelerations due to LMC and M31 cannot be ignored depending on lines of sight. We create all-sky maps of the expected change in redshift and the corresponding uncertainty, which can be used to correct for this effect.
Using dark matter simulations we show how halo bias is determined by local density and not by halo mass. This is not totally surprising, as according to the peak-background split model, local density is the property that constraints bias at large sca les. Massive haloes have a high clustering because they reside in high density regions. Small haloes can be found in a wide range of environments which determine their clustering amplitudes differently. This contradicts the assumption of standard Halo Occupation Distribution (HOD) models that the bias and occupation of haloes is determined solely by their mass. We show that the bias of central galaxies from semi-analytic models of galaxy formation as a function of luminosity and colour is not correctly predicted by the standard HOD model. Using local density instead of halo mass the HOD model correctly predicts galaxy bias. These results indicate the need to include information about local density and not only mass in order to correctly apply HOD analysis in these galaxy samples. This new model can be readily applied to observations and has the advantage that the galaxy density can be directly observed, in contrast with the dark matter halo mass.
Applying dendrogram analysis to the CARMA-NRO C$^{18}$O ($J$=1--0) data having an angular resolution of $sim$ 8, we identified 692 dense cores in the Orion Nebula Cluster (ONC) region. Using this core sample, we compare the core and initial stellar m ass functions in the same area to quantify the step from cores to stars. About 22 % of the identified cores are gravitationally bound. The derived core mass function (CMF) for starless cores has a slope similar to Salpeters stellar initial mass function (IMF) for the mass range above 1 $M_odot$, consistent with previous studies. Our CMF has a peak at a subsolar mass of $sim$ 0.1 $M_odot$, which is comparable to the peak mass of the IMF derived in the same area. We also find that the current star formation rate is consistent with the picture in which stars are born only from self-gravitating starless cores. However, the cores must gain additional gas from the surroundings to reproduce the current IMF (e.g., its slope and peak mass), because the core mass cannot be accreted onto the star with a 100% efficiency. Thus, the mass accretion from the surroundings may play a crucial role in determining the final stellar masses of stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا