ﻻ يوجد ملخص باللغة العربية
Applying dendrogram analysis to the CARMA-NRO C$^{18}$O ($J$=1--0) data having an angular resolution of $sim$ 8, we identified 692 dense cores in the Orion Nebula Cluster (ONC) region. Using this core sample, we compare the core and initial stellar mass functions in the same area to quantify the step from cores to stars. About 22 % of the identified cores are gravitationally bound. The derived core mass function (CMF) for starless cores has a slope similar to Salpeters stellar initial mass function (IMF) for the mass range above 1 $M_odot$, consistent with previous studies. Our CMF has a peak at a subsolar mass of $sim$ 0.1 $M_odot$, which is comparable to the peak mass of the IMF derived in the same area. We also find that the current star formation rate is consistent with the picture in which stars are born only from self-gravitating starless cores. However, the cores must gain additional gas from the surroundings to reproduce the current IMF (e.g., its slope and peak mass), because the core mass cannot be accreted onto the star with a 100% efficiency. Thus, the mass accretion from the surroundings may play a crucial role in determining the final stellar masses of stars.
We present a new census of the Orion Nebula Cluster (ONC) over a large field of view (>30x30), significantly increasing the known population of stellar and substellar cluster members with precisely determined properties. We develop and exploit a tech
The kinematics and dynamics of stellar and substellar populations within young, still-forming clusters provides valuable information for constraining theories of formation mechanisms. Using Keck II NIRSPEC+AO data, we have measured radial velocities
We have performed an unbiased dense core survey toward the Orion A Giant Molecular Cloud in the C$^{18}$O ($J$=1--0) emission line taken with the Nobeyama Radio Observatory (NRO) 45-m telescope. The effective angular resolution of the map is 26, whic
The spatial morphology and dynamical status of a young, still-forming stellar cluster provide valuable clues on the conditions during the star formation event and the processes that regulated it. We analyze the Orion Nebula Cluster (ONC), utilizing t
Recent Hubble Space Telescope images have allowed the determination with unprecedented accuracy of motions and changes of shocks within the inner Orion Nebula. These originate from collimated outflows from very young stars, some within the ionized po