ترغب بنشر مسار تعليمي؟ اضغط هنا

Assigning Creative Commons Licenses to Research Metadata: Issues and Cases

74   0   0.0 ( 0 )
 نشر من قبل Marta Poblet
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper discusses the problem of lack of clear licensing and transparency of usage terms and conditions for research metadata. Making research data connected, discoverable and reusable are the key enablers of the new data revolution in research. We discuss how the lack of transparency hinders discovery of research data and make it disconnected from the publication and other trusted research outcomes. In addition, we discuss the application of Creative Commons licenses for research metadata, and provide some examples of the applicability of this approach to internationally known data infrastructures.



قيم البحث

اقرأ أيضاً

Automated classification of metadata of research data by their discipline(s) of research can be used in scientometric research, by repository service providers, and in the context of research data aggregation services. Openly available metadata of th e DataCite index for research data were used to compile a large training and evaluation set comprised of 609,524 records, which is published alongside this paper. These data allow to reproducibly assess classification approaches, such as tree-based models and neural networks. According to our experiments with 20 base classes (multi-label classification), multi-layer perceptron models perform best with a f1-macro score of 0.760 closely followed by Long Short-Term Memory models (f1-macro score of 0.755). A possible application of the trained classification models is the quantitative analysis of trends towards interdisciplinarity of digital scholarly output or the characterization of growth patterns of research data, stratified by discipline of research. Both applications perform at scale with the proposed models which are available for re-use.
As the amount of scientific data continues to grow at ever faster rates, the research community is increasingly in need of flexible computational infrastructure that can support the entirety of the data science lifecycle, including long-term data sto rage, data exploration and discovery services, and compute capabilities to support data analysis and re-analysis, as new data are added and as scientific pipelines are refined. We describe our experience developing data commons-- interoperable infrastructure that co-locates data, storage, and compute with common analysis tools--and present several cases studies. Across these case studies, several common requirements emerge, including the need for persistent digital identifier and metadata services, APIs, data portability, pay for compute capabilities, and data peering agreements between data commons. Though many challenges, including sustainability and developing appropriate standards remain, interoperable data commons bring us one step closer to effective Data Science as Service for the scientific research community.
In recent years, machine learning (ML) systems have been increasingly applied for performing creative tasks. Such creative ML approaches have seen wide use in the domains of visual art and music for applications such as image and music generation and style transfer. However, similar creative ML techniques have not been as widely adopted in the domain of game design despite the emergence of ML-based methods for generating game content. In this paper, we argue for leveraging and repurposing such creative techniques for designing content for games, referring to these as approaches for Game Design via Creative ML (GDCML). We highlight existing systems that enable GDCML and illustrate how creative ML can inform new systems via example applications and a proposed system.
We discuss statistical issues in cases of serial killer nurses, focussing on the Dutch case of the nurse Lucia de Berk, arrested under suspicion of murder in 2001, convicted to life imprisonment, but declared innocent in 2010; and the case of the Eng lish nurse Ben Geen, arrested in 2004, also given a life sentence. At the trial of Ben Geen, a statistical expert was refused permission to present evidence on statistical biases concerning the way suspicious cases were identified by a hospital team of investigators. The judge ruled that the experts written evidence was merely common sense. An application to the CCRC to review the case was turned down, since the application only presented statistical evidence but did not re-address the medical evidence presented at the original trials. This rejection has been successfully challenged in court, and the CCRC has withdrawn it. The paper includes some striking new statistical findings on the Ben Geen case as well as giving advice to statisticians involved in future cases, which are not infrequent. Statisticians need to be warned of the pitfalls which await them.
In the current era, people and society have grown increasingly reliant on artificial intelligence (AI) technologies. AI has the potential to drive us towards a future in which all of humanity flourishes. It also comes with substantial risks for oppre ssion and calamity. Discussions about whether we should (re)trust AI have repeatedly emerged in recent years and in many quarters, including industry, academia, healthcare, services, and so on. Technologists and AI researchers have a responsibility to develop trustworthy AI systems. They have responded with great effort to design more responsible AI algorithms. However, existing technical solutions are narrow in scope and have been primarily directed towards algorithms for scoring or classification tasks, with an emphasis on fairness and unwanted bias. To build long-lasting trust between AI and human beings, we argue that the key is to think beyond algorithmic fairness and connect major aspects of AI that potentially cause AIs indifferent behavior. In this survey, we provide a systematic framework of Socially Responsible AI Algorithms that aims to examine the subjects of AI indifference and the need for socially responsible AI algorithms, define the objectives, and introduce the means by which we may achieve these objectives. We further discuss how to leverage this framework to improve societal well-being through protection, information, and prevention/mitigation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا