ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-semigroup gradings of associative algebras

100   0   0.0 ( 0 )
 نشر من قبل Pasha Zusmanovich
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Pasha Zusmanovich




اسأل ChatGPT حول البحث

It is known that there are Lie algebras with non-semigroup gradings, i.e. such that the binary operation on the grading set is not associative. We provide a similar example in the class of associative algebras.



قيم البحث

اقرأ أيضاً

We study gradings by abelian groups on associative algebras with involution over an arbitrary field. Of particular importance are the fine gradings (that is, those that do not admit a proper refinement), because any grading on a finite-dimensional al gebra can be obtained from them via a group homomorphism (although not in a unique way). We classify up to equivalence the fine gradings on simple associative algebras with involution over the field of real numbers (or any real closed field) and, as a consequence, on the real forms of classical simple Lie algebras.
70 - Elisabeth Remm 2020
We study deformation quantization of nonassociative algebras whose associator satisfies some symmetric relations. This study is expanded to a larger class of nonassociative algebras includind Leibniz algebras. We apply also to this class the rule of polarization-depolarization.
We classify, up to isomorphism, the 2-dimensional algebras over a field K. We focuse also on the case of characteristic 2, identifying the matrices of GL(2,F_2) with the elements of the symmetric group S_3. The classification is then given by the stu dy of the orbits of this group on a 3-dimensional plane, viewed as a Fano plane. As applications, we establish classifications of Jordan algebras, algebras of Lie type or Hom-Associative algebras.
We classify, up to isomorphism, gradings by abelian groups on nilpotent filiform Lie algebras of nonzero rank. In case of rank 0, we describe conditions to obtain non trivial $Z_k$-gradings.
205 - Eli Aljadeff , Ofir David 2014
We show that there exists a constant K such that for any PI- algebra W and any nondegenerate G-grading on W where G is any group (possibly infinite), there exists an abelian subgroup U of G with $[G : U] leq exp(W)^K$. A G-grading $W = bigoplus_{g in G}W_g$ is said to be nondegenerate if $W_{g_1}W_{g_2}... W_{g_r} eq 0$ for any $r geq 1$ and any $r$ tuple $(g_1, g_2,..., g_r)$ in $G^r$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا