ترغب بنشر مسار تعليمي؟ اضغط هنا

3D Stochastic Geometry Model for Large-Scale Molecular Communication Systems

57   0   0.0 ( 0 )
 نشر من قبل Yansha Deng
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Information delivery using chemical molecules is an integral part of biology at multiple distance scales and has attracted recent interest in bioengineering and communication. The collective signal strength at the receiver (i.e., the expected number of observed molecules inside the receiver), resulting from a large number of transmitters at random distances (e.g., due to mobility), can have a major impact on the reliability and efficiency of the molecular communication system. Modeling the collective signal from multiple diffusion sources can be computationally and analytically challenging. In this paper, we present the first tractable analytical model for the collective signal strength due to randomly-placed transmitters, whose positions are modelled as a homogeneous Poisson point process in three-dimensional (3D) space. By applying stochastic geometry, we derive analytical expressions for the expected number of observed molecules at a fully absorbing receiver and a passive receiver. Our results reveal that the collective signal strength at both types of receivers increases proportionally with increasing transmitter density. The proposed framework dramatically simplifies the analysis of large-scale molecular systems in both communication and biological applications.

قيم البحث

اقرأ أيضاً

Information delivery using chemical molecules is an integral part of biology at multiple distance scales and has attracted recent interest in bioengineering and communication theory. Potential applications include cooperative networks with a large nu mber of simple devices that could be randomly located (e.g., due to mobility). This paper presents the first tractable analytical model for the collective signal strength due to randomly-placed transmitters in a three-dimensional (3D) large-scale molecular communication system, either with or without degradation in the propagation environment. Transmitter locations in an unbounded and homogeneous fluid are modelled as a homogeneous Poisson point process. By applying stochastic geometry, analytical expressions are derived for the expected number of molecules absorbed by a fully-absorbing receiver or observed by a passive receiver. The bit error probability is derived under ON/OFF keying and either a constant or adaptive decision threshold. Results reveal that the combined signal strength increases proportionately with the transmitter density, and the minimum bit error probability can be improved by introducing molecule degradation. Furthermore, the analysis of the system can be generalized to other receiver designs and other performance characteristics in large-scale molecular communication systems.
The recent trends of densification and centralized signal processing in radio access networks suggest that future networks may comprise ubiquitous antennas coordinated to form a network-wide gigantic array, referred to as the ubiquitous array (UA). I n this paper, the UA communication techniques are designed and analyzed based on a geometric model. Specifically, the UA is modeled as a continuous circular/spherical array enclosing target users and free-space propagation is assumed. First, consider the estimation of multiuser UA channels induced by user locations. Given single pilot symbols, a novel channel estimation scheme is proposed that decomposes training signals into Fourier/Laplace series and thereby translates multiuser channel estimation into peak detection of a derive function of location. The process is shown to suppress noise. Moreover, it is proved that estimation error due to interference diminishes with the increasing minimum user-separation distance following the power law, where the exponent is 1/3 and 1 for the circular and spherical UA, respectively. If orthogonal pilot sequences are used, channel estimation is found to be perfect. Next, consider channel-conjugate data transmission that maximizes received signal power. The power of interference between two users is shown to decay with the increasing user-separation distance sub-linearly and super-linearly for the circular and spherical UA, respectively. Furthermore, a novel multiuser precoding design is proposed by exciting different phase modes of the UA and controlling the mode weight factors to null interference. The number of available degrees of freedom for interference nulling using the UA is proved to be proportional to the minimum user-separation distance.
Energy harvesting is a technology for enabling green, sustainable, and autonomous wireless networks. In this paper, a large-scale wireless network with energy harvesting transmitters is considered, where a group of transmitters forms a cluster to coo peratively serve a desired receiver amid interference and noise. To characterize the link-level performance, closed-form expressions are derived for the transmission success probability at a receiver in terms of key parameters such as node densities, energy harvesting parameters, channel parameters, and cluster size, for a given cluster geometry. The analysis is further extended to characterize a network-level performance metric, capturing the tradeoff between link quality and the fraction of receivers served. Numerical simulations validate the accuracy of the analytical model. Several useful insights are provided. For example, while more cooperation helps improve the link-level performance, the network-level performance might degrade with the cluster size. Numerical results show that a small cluster size (typically 3 or smaller) optimizes the network-level performance. Furthermore, substantial performance can be extracted with a relatively small energy buffer. Moreover, the utility of having a large energy buffer increases with the energy harvesting rate as well as with the cluster size in sufficiently dense networks.
Industrial automation is one of the key application scenarios of the fifth (5G) wireless communication network. The high requirements of industrial communication systems for latency and reliability lead to the need for industrial channel models to su pport massive multiple-input multipleoutput (MIMO) and millimeter wave communication. In addition, due to the complex environment, huge communication equipment, and numerous metal scatterers, industrial channels have special rich dense multipath components (DMCs). Considering these characteristics, a novel three dimensional (3D) non-stationary geometry-based stochastic model (GBSM) for industrial automation wireless channel is proposed in this paper. Channel characteristics including the transfer function, time-varying space-time-frequency correlation function (STFCF), and root mean square (RMS) delay spread, model parameters including delay scaling factor and power decay factor are studied and analyzed. Besides, according to the indoor factory scenario classification of the 3rd Generation Partnership Project (3GPP) TR 38.901, two sub-scenarios considering the clutter density are simulated. Simulated cumulative distribution functions (CDFs) of RMS delay spread show a good consistency with the measurement data.
Large-scale antenna (LSA) has gained a lot of attention due to its great potential to significantly improve system throughput. In most existing works on LSA systems, orthogonal frequency division multiplexing (OFDM) is presumed to deal with frequency selectivity of wireless channels. Although LSA-OFDM is a natural evolution from multiple-input multiple-output OFDM (MIMO-OFDM), the drawbacks of LSA-OFDM are inevitable, especially when used for the uplink. In this paper, we investigate single-carrier (SC) modulation for the uplink transmission in LSA systems based on a novel waveform recovery theory, where the receiver is designed to recover the transmit waveform while the information-bearing symbols can be recovered by directly sampling the recovered waveform. The waveform recovery adopts the assumption that the antenna number is infinite and the channels at different antennas are independent. In practical environments, however, the antenna number is always finite and the channels at different antennas are also correlated when placing hundreds of antennas in a small area. Therefore, we will also analyze the impacts of such non-ideal environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا