ﻻ يوجد ملخص باللغة العربية
Information delivery using chemical molecules is an integral part of biology at multiple distance scales and has attracted recent interest in bioengineering and communication. The collective signal strength at the receiver (i.e., the expected number of observed molecules inside the receiver), resulting from a large number of transmitters at random distances (e.g., due to mobility), can have a major impact on the reliability and efficiency of the molecular communication system. Modeling the collective signal from multiple diffusion sources can be computationally and analytically challenging. In this paper, we present the first tractable analytical model for the collective signal strength due to randomly-placed transmitters, whose positions are modelled as a homogeneous Poisson point process in three-dimensional (3D) space. By applying stochastic geometry, we derive analytical expressions for the expected number of observed molecules at a fully absorbing receiver and a passive receiver. Our results reveal that the collective signal strength at both types of receivers increases proportionally with increasing transmitter density. The proposed framework dramatically simplifies the analysis of large-scale molecular systems in both communication and biological applications.
Information delivery using chemical molecules is an integral part of biology at multiple distance scales and has attracted recent interest in bioengineering and communication theory. Potential applications include cooperative networks with a large nu
The recent trends of densification and centralized signal processing in radio access networks suggest that future networks may comprise ubiquitous antennas coordinated to form a network-wide gigantic array, referred to as the ubiquitous array (UA). I
Energy harvesting is a technology for enabling green, sustainable, and autonomous wireless networks. In this paper, a large-scale wireless network with energy harvesting transmitters is considered, where a group of transmitters forms a cluster to coo
Industrial automation is one of the key application scenarios of the fifth (5G) wireless communication network. The high requirements of industrial communication systems for latency and reliability lead to the need for industrial channel models to su
Large-scale antenna (LSA) has gained a lot of attention due to its great potential to significantly improve system throughput. In most existing works on LSA systems, orthogonal frequency division multiplexing (OFDM) is presumed to deal with frequency