ﻻ يوجد ملخص باللغة العربية
Energy harvesting is a technology for enabling green, sustainable, and autonomous wireless networks. In this paper, a large-scale wireless network with energy harvesting transmitters is considered, where a group of transmitters forms a cluster to cooperatively serve a desired receiver amid interference and noise. To characterize the link-level performance, closed-form expressions are derived for the transmission success probability at a receiver in terms of key parameters such as node densities, energy harvesting parameters, channel parameters, and cluster size, for a given cluster geometry. The analysis is further extended to characterize a network-level performance metric, capturing the tradeoff between link quality and the fraction of receivers served. Numerical simulations validate the accuracy of the analytical model. Several useful insights are provided. For example, while more cooperation helps improve the link-level performance, the network-level performance might degrade with the cluster size. Numerical results show that a small cluster size (typically 3 or smaller) optimizes the network-level performance. Furthermore, substantial performance can be extracted with a relatively small energy buffer. Moreover, the utility of having a large energy buffer increases with the energy harvesting rate as well as with the cluster size in sufficiently dense networks.
In this paper, we consider a three-node cooperative wireless powered communication system consisting of a multi-antenna hybrid access point (H-AP) and a single-antenna relay and a single-antenna user. The energy constrained relay and user first harve
The rapid growth of the so-called Internet of Things is expected to significantly expand and support the deployment of resource-limited devices. Therefore, intelligent scheduling protocols and technologies such as wireless power transfer, are importa
We consider a full-duplex decode-and-forward system, where the wirelessly powered relay employs the time-switching protocol to receive power from the source and then transmit information to the destination. It is assumed that the relay node is equipp
Wireless energy harvesting is regarded as a promising energy supply alternative for energy-constrained wireless networks. In this paper, a new wireless energy harvesting protocol is proposed for an underlay cognitive relay network with multiple prima
This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the informati