ﻻ يوجد ملخص باللغة العربية
Large deviation functions are an essential tool in the statistics of rare events. Often they can be obtained by contraction from a so-called level 2 large deviation {em functional} characterizing the empirical density of the underlying stochastic process. For Langevin systems obeying detailed balance, the explicit form of this functional has been known ever since the mathematical work of Donsker and Varadhan. We rederive the Donsker-Varadhan result by using stochastic path-integrals and then generalize it to situations without detailed balance including non-equilibrium steady states. The proper incorporation of the empirical probability flux turns out to be crucial. We elucidate the relation between the large deviation functional and different notions of entropy production in stochastic thermodynamics and discuss some aspects of the ensuing contractions. Finally, we illustrate our findings with examples.
The standard Large Deviation Theory (LDT) represents the mathematical counterpart of the Boltzmann-Gibbs factor which describes the thermal equilibrium of short-range Hamiltonian systems, the velocity distribution of which is Maxwellian. It is generi
The theory of large deviations has been applied successfully in the last 30 years or so to study the properties of equilibrium systems and to put the foundations of equilibrium statistical mechanics on a clearer and more rigorous footing. A similar a
An extension of the H-theorem for dissipative particle dynamics (DPD) to the case of a multi-component fluid is made. Detailed balance and an additional H-theorem are proved for an energy-conserving version of the DPD algorithm. The implications of t
Driven surface diffusion occurs, for example, in molecular beam epitaxy when particles are deposited under an oblique angle. Elastic phase transitions happen when normal modes in crystals become soft due to the vanishing of certain elastic constants.
The theory of large deviations constitutes a mathematical cornerstone in the foundations of Boltzmann-Gibbs statistical mechanics, based on the additive entropy $S_{BG}=- k_Bsum_{i=1}^W p_i ln p_i$. Its optimization under appropriate constraints yiel